实用高中数学三角函数教案设计意图实用【实用5篇】
【导读预览】此篇优秀范文“实用高中数学三角函数教案设计意图实用【实用5篇】”由阿拉题库网友为您整理分享,以供您参考学习之用,希望此篇资料对您有所帮助,喜欢就复制下载支持吧!
高中数学三角函数教案设计意图【第一篇】
本专业培养和造就适应现代化建设需要。德智体全面发展、基础扎实、知识面宽、能力强、素质高具有创新精神,系统掌握计算机硬件、软件的基本理论与应用基本技能,具有较强的实践能力,能在企事业单位、政府机关、行政管理部门从事计算机技术研究和应用,硬件、软件和网络技术的开发,计算机管理和维护的应用型专门技术人才。
网络工程方向就业方向广阔,学生毕业后可以到国内外大型电信服务商、大型通信设备制造企业进行技术开发工作,也可以到其他企事业单位从事网络工程领域的设计、维护、教育培训等工作。
2,通信方向 学生毕业后可到信息产业、财政、金融、邮电、交通、国防、大专院校和科研机构从事通信技术和电子技术的科研、教学和工程技术工作。
3,网络与信息安全方向,宽口径专业,主干学科为信息安全和网络工程。学生毕业后可为政府、国防、军队、电信、电力、金融、铁路等部门的计算机网络系统和信息安全领域进行管理和服务的高级专业工程技术人才。并可继续攻读信息安全、通信、信息处理、计算机软件和其他相关学科的硕士学位。
现在正是信息时代很有前途 ,市场需求量也很大,尽管现在开设这科的学校很多,毕业的学生也很多, 但真正学得精的人太少,所以很多人说就不了业,实际上市场需要真正有本事的人。 如果学,一定学精,才能找到更有好的工作,这科就业面宽,各行各业都需要计算机,所以一定要学精,毕业搞搞编程,软件开发等,几年后,有了工作经验,有可能做个技术部主管,如果你有管理能力,还可以搞管理工作。而所谓的高薪也是从编程开始的,所以想赚大钱的就业面并不宽,有用的东西在大学、社会。
高中数学三角函数教案设计意图【第二篇】
本章包括锐角三角函数的概念(主要是正弦、余弦和正切的概念),以及利用锐角三角函数解直角三角形等内容。锐角三角函数为解直角三角形提供了有效的工具,解直角三角形在实际当中有着广泛的应用,这也为锐角三角函数提供了与实际联系的机会。研究锐角三角函数的直接基础是相似三角形的一些结论,解直角三角形主要依赖锐角三角函数和勾股定理等内容,因此相似三角形和勾股定理等是学习本章的直接基础。
本章内容与已学 '相似三角形''勾股定理'等内容联系紧密,并为高中数学中三角函数等知识的学习作好准备。
学情分析:
锐角三角函数的概念既是本章的难点,也是学习本章的关键。难点在于,锐角三角函数的概念反映了角度与数值之间对应的函数关系,这种角与数之间的对应关系,以及用含有几个字母的符号 sina、cosa、tana表示函数等,学生过去没有接触过,因此对学生来讲有一定的难度。至于关键,因为只有正确掌握了锐角三角函数的概念,才能真正理解直角三角形中边、角之间的关系,从而才能利用这些关系解直角三角形。
锐角三角函数
第一课时
教学目标:
知识与技能:
1、通过探究使学生知道当直角三角形的锐角固定时,它的对边与斜边的比值都固定(即正弦值不变)这一事实。
2、能根据正弦概念正确进行计算
3、经历当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实,发展学生的形象思维,培养学生由特殊到一般的演绎推理能力。
过程与方法:
情感态度与价值观:
重难点:
教学过程:
一、复习旧知、引入新课
引入操场里有一个旗杆,老师让小明去测量旗杆高度。(演示学校操场上的国旗图片)
小明站在离旗杆底部10米远处,目测旗杆的顶部,视线与水平线的夹角为34度,并已知目高为1米.然后他很快就算出旗杆的高度了。
你想知道小明怎样算出的吗?
下面我们大家一起来学习锐角三角函数中的第一种:锐角的正弦
二、探索新知、分类应用
活动一问题的引入
高中数学三角函数教案设计意图【第三篇】
了解双曲线的定义,几何图形和标准方程,知道它的简单性质。
自学质疑
渐近线方程是 ,离心率 ,若点 是双曲线上的点,则 , 。
3.经过两点 的双曲线的标准方程是 。
4.双曲线的渐近线方程是 ,则该双曲线的离心率等于 。
5.与双曲线 有公共的渐近线,且经过点 的双曲线的方程为
例题精讲
1.双曲线的离心率等于 ,且与椭圆 有公共焦点,求该双曲线的方程。
2.已知椭圆具有性质:若 是椭圆 上关于原点对称的两个点,点 是椭圆上任意一点,当直线 的斜率都存在,并记为 时,那么 之积是与点 位置无关的定值,试对双曲线 写出具有类似特性的性质,并加以证明。
3.设双曲线 的半焦距为 ,直线 过 两点,已知原点到直线 的距离为 ,求双曲线的离心率。
矫正巩固
1.双曲线 上一点 到一个焦点的距离为 ,则它到另一个焦点的距离为 。
2.与双曲线 有共同的渐近线,且经过点 的双曲线的一个焦点到一条渐近线的距离是 。
3.若双曲线 上一点 到它的右焦点的距离是 ,则点 到 轴的距离是
4.过双曲线 的左焦点 的直线交双曲线于 两点,若 。则这样的直线一共有 条。
迁移应用
2. 已知双曲线 的焦点为 ,点 在双曲线上,且 ,则点 到 轴的距离为 。
3. 双曲线 的焦距为
4. 已知双曲线 的一个顶点到它的一条渐近线的距离为 ,则
高中数学三角函数教案设计意图【第四篇】
教学目标
熟练掌握三角函数式的求值
教学重难点
熟练掌握三角函数式的求值
教学过程
知识点精讲
三角函数式的求值的关键是熟练掌握公式及应用, 掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论
例题选讲
课堂小结
三角函数式的求值的关键是熟练掌握公式及应用, 掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论
作业布置
p172能力提高5,6,7,8高考预测
高中数学三角函数教案设计意图【第五篇】
而在数学当中,游戏规则就是所谓的基本定义。想学好函数,第一要牢固掌握基本定义及对应的图像特征,如定义域,值域,奇偶性,单调性,周期性,对称轴等。
很多同学都进入一个学习函数的误区,认为只要掌握好的做题方法就能学好数学,其实应该首先应当掌握最基本的定义,在此基础上才能学好做题的方法,所有的做题方法要成立归根结底都必须从基本定义出发,最好掌握这些定义和性质的代数表达以及图像特征。
中学就那么几种基本初等函数:一次函数(直线方程)、二次函数、反比例函数、指数函数、对数函数、正弦余弦函数、正切余切函数,所有的函数题都是围绕这些函数来出的,只是形式不同而已,最终都能靠基本知识解决。
还有三种函数,尽管课本上没有,但是在高考以及自主招生考试中都经常出现的对勾函数:y=ax+b/x,含有绝对值的函数,三次函数。这些函数的定义域、值域、单调性、奇偶性等性质和图像等各方面的特征都要好好研究。
翻阅历年高考函数题,有一个算一个,几乎百分之八十的函数问题都与图像有关。这就要求同学们在学习函数时多多关注函数的图像,要会作图、会看图、会用图!多多关注函数图象的平移、放缩、翻转、旋转、复合与叠加等问题。