数据分析方法精彩4篇

网友 分享 时间:

【导言】此例“数据分析方法精彩4篇”的范文资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

数据分析报告【第一篇】

一、总体概况

在国家信息网络战略及“互联网+”战略实施的大力推动下,我区从政策、人才、产品等方面不断加大对电子商务发展的投入力度,取得了良好效果。20xx年,区内电子商务市场规模实现平稳增长,实现电商交易总额104亿元,较20xx年同比增长17 %。其中网络零售额全年累计亿元,同比增长15%;农产品销售全年累计亿元,同比增长5%。

二、电商成交指数分析

(一)电商交易总额。20xx年,区内全年电商成交总额达104亿元,同比增长17%,尤其是农产品上行增势喜人,但总体来看,电商交易总额增速较20xx年约28%的增长率有所放缓。究其原因:

一是政策和市场因素。20xx年以前,我区电商发展基础差,电商成交额度小,随着国家电商综合示范创建项目开展,上下行通道全面打通,大量财力、物力、人力投身其中,尤其是“电商服务中心—站—点”三级服务体系的建成,以智能网仓和城乡物流通道为基础的电商物流配送体系全面运行,以区域公共品牌“山韵黔江”及产品品牌为支撑的网销品牌体系初步形成,各大电商企业、电商平台、尤其是社群电商应势发力,销量节节攀升,促进了我区电商飞速发展。如今,随着国家电子商务法的颁布实施,各项政策企稳,区内电商活动也受到市场环境影响,开始进入稳定发展阶段。

二是基数因子的影响。一方面,随着网络支付设施的推广普及,选择微信、支付宝等进行线下交易支付的群体增长逐渐到达临界点,增势出现“梯度差”;另一方面,我区对周边市场具有一定辐射力,但市场容量仍然较小,反映在电商交易规模上,增长的难度将逐渐加大。

三是保量提质的需求。如今的新零售模式更加讲究“品质至上”和“内容为王”,我区电商开始进行资源和人力方面的优化整合,迈入更加注重品牌力和品质力的新征程,摒弃掉了过去一些粗犷化和原始化的发展模式,在保证总量有所增长的基础上,更加注重品质的提升。

(二)网络零售总额。20xx年,我区网络销售总额为亿元,较20xx年同比增长15%,其中购进(产品下行)亿元,卖出(产品上行)亿元,二者同比增长率分别为14%、17%。与20xx年购进亿元和卖出亿元相比,绝对数值上都有较大的提升。

一是随着时代的发展与电商基础设施的进一步完善,电商逐渐融入大家的生活,加之区内城乡居民的购买力逐步上升,网上购物成为一种消费新常态;

二是随着各类B2C、C2C电商用户群和商品种类不断发展 ,新型零售平台的服务功能逐步深化,促进了网购(下行+上行)的进一步发展;

三是区委区政府对电商,尤其是电商精准扶贫和乡村振兴的重视和大力扶持,一大批电商平台依托区内广大农村茁壮成长起来,带动了农特产品的上行销售。

(三)农产品销售额。20xx年,区内农产品网络销售额有所增长,突破10亿元大关。

一是产品溢价机会增大。我区位于武陵山区腹地,生态环境良好,农特产品具有一定的品质优势,如脆红李、猕猴桃、阳雀菌等大宗爆款商品在20xx年实现量产,增幅较大;

二是品牌推广效应拉动明显。通过“山韵黔江”及各乡镇多子品牌的共同包装和多维度场景化推广,为农特产品销售助力;

三是农产品深加工效益。区内逐渐形成了从农产品粗加工到深加工的产销一体化产业链,如红薯干、苕粉、渣海椒等;

四是统计口径不断优化。20xx年,各类电商企业的农特产品销售逐渐纳入统计,基本实现无漏报;

五是销售渠道增多。以前从单一淘宝店铺,发展成以京东、邮乐购、微商、微商城、有赞及自建平台、O2O线下体验直销店等多个销售平台共同发展销售渠道,基本上达到了有农产品就有电商,有渠道就有黔江农特产品。

三、电商发展趋势研判

第一,农村电商已常态化,市场竞争进行第三个阶段,重点在产品供应链上。如何让农产品电商化,具备利用电子商务进行销售的前期条件完善,如产品包装、策划、标准化、存储方式、可持续供给、运输等,实现农村电商提档升级触及农户,也就是电商生态链在农村的打造成为重点。

第二,城市供配系统通过电商方式将农村与城市进行有效链接。城市配送植根于打通“城市物流最后一公里”的解决方案,解决乡村振兴中货品进出的高效多样的问题将是重要抓手之一。

第三,品牌推动的农产品溢价将在农村电商中大放异彩。在“传统”的电商模式之外,会员制、预售制、众筹、认领等形式必将会更深一步融入电商,电商也将从“卖产品”慢慢过渡到“卖生活方式、卖情怀、卖格调”,社群电商将更加聚焦精准人群,发力细分市场。

第四,大数据驱动下的生产方式发生变化。大数据平台的建立和使用,可以将原始零散的低密度价值数据经过过滤、分析,建立模型,供决策使用,提前预测市场发展方向,有效提升效率,降低成本。

四、电商发展建议

一是提高对电商的认识,电商不是简单的商业行为,而是解决农产品品牌化、供应链,反作用于生产的一整套解决方案,不是商务委的一个简单工作,从发达地区的发展经验看,是以营造电商生态来推动产业发展或产业发展融入电商生态。

二是加大招商引资力度,力争引入成熟电商引领黔江电商跨跃式发展,导入成熟,大量的需求流量;

三是以电商园区智能物流,冷链物流为基础,打造黔江农特产品供应链服务体系;

四是加强对黔江农特产品的包装策划,打造一批电商爆品;

五是做好大数据运用,为黔江电商发展提供智力和决策支撑。

数据分析报告【第二篇】

回顾,我从XX年10月27日迈入xx铝业这个大家庭已经和大家和谐相处了数十年。 随着公司的成长,也不断的提高了我个人的能力。XX年上半年我在生产部查前工序的数据。下半年根据公司的需要又调回成品车间担任数据指导员这一职。从那一刻起我主要负责成品车间的进仓数的准确性,规划仓位和备料库的管理工作。由于成品车间的进仓数据和上工序有着重要的联系。所以在工作中我都非常认真的对待每一个数据、万不可因自己的粗心大意给公司带来多余的麻烦。

在成品车间,我坚定不一的按照公司的方针政策执行,听从领导的安排,做好自己的本职工作,同时协助本组成员进仓,尽自己最大的努力将成品进仓的数据更精确,经常听取大家好的建议,结合工作中的经验,改进自己的不足,不断提升自己,争取为公司创造更大的价值。

一、我工作主要负责是管理好进仓数据成员,协助她们进仓,查出她们的不足方面,把自己在工作中的经验毫无保留的传达给她们,也让她们在工作的同时不断提升自己的能力。不定时的对她们进行培训,使我们这个团队的综合能力更上一个新的台阶,同事也要提高进仓仓位的准确性,管理好备料库的型材是否齐全,如有缺少品种及时补库,进仓数据是准确性是保证订单完成的重要环节,也是成品车间最重要的工作岗位。在进仓的细节上我从不马虎,确保成品进仓数据的准确性,满足客户的需求,为公司利益,我总是认真坚守自己的岗位,带动本组成员工作的积极性。

二、仓位的准确性,是直接对客户提货的时间有着不可分开的关系,在这方面我常常与进仓班长,进仓搬运,数据源进行多次共同交流,一定要把数据。仓位进准,不管事上erp还是手工帐都要一致,不得有任何差错,大家团结一致把进仓的工作做得更好、更细、更perfect!

三、备料库以前是由专人管理 ,但是现在没有专人管理,这对我来说也是一个考验,每天都会去专注型材的去向,同时做好手工台账,做到进出合理,不混乱,也经常和本组成员对工作现场进行清扫、整理,让大家有个舒适的工作环境,保持轻松愉快的心情去将我们的工作做到更好。

在平时的工作中我自己也有不足之处,进仓数据还不够完全准确,仓位有改进但也是大家的功劳,现在面临的成品仓的工作,我想说句实话,能否在进仓那里增加一人,因为备料库还是要专人管理比较好,我只是建议。

对于下一步的工作,请公司相信我,我已做好了准备迎接新的挑战。

数据分析报告【第三篇】

一、团队的合作是完成工作的前提

做一份能令领导满意的数据表格不单单是自己一个人闭门造车所能造出来的,需要合理的意见和适当的帮助,自己的制表思路是要在前人的启发下才能发挥出色。

二、精准的数据需要懂得数据的理念和要求,数据的运用

做数据表格是给人一种一目了然的清晰感,怎样把公司的数据信息及时传达公司领导、客户及客户主任尤为重要。准确的数据表格是给领导和客户的第一印象,是直接影响整份表格的进度。信息是及时、全面反映整个企业的精神面貌和工作动态,这就要求及时,迅速,对各部门上报的信息进行整理、加工,对发生的大事对各部门进行催报,使信息管理工作更加规范到位。

三、善于总结,懂得吸取经验

经验是在实际工作在中得到的,把握了经验工作自然就是事半功倍。刚开始做数据表格时,只知道一味的按部就班,缺少灵活性,表格表达不清晰。后来经过不断的摸索,领悟到表格有很多功能是值得我们去参谋的,运用vlookup,sumif等常用公式,让自己变得灵活而具有战斗力。表达最美的效果,这种感觉是要在长期的工作经验中积累起来的。

四、善于沟通,避免出错

做数据表格是在第一份原始资料的基础上做出来的,第一份原始资料就是小马做的数据报表,做数据时遇到什么不明白的需请教,因此信息传递是很重要的,我们要保持信息的畅通性就必须善于沟通,否则出现差错,前功尽弃。所以,一边工作一边总结经验是百利而无一害的。

五、做数据表格要讲究效率和准确

数据的作用是给他人能够更快的看清楚所表达的数据内容,还有重要的是数据准确性及美观,给人一种赏心悦目,心旷神怡的舒服感,具有挑战性的是有一种感觉,就是一眼就分辨得出哪里好,哪里需要改进,哪里需要取。

六、感想

一、数据部是实现自己理想和展现自己技能的平台。能把自己所学知识运用出来是一件值得庆幸的事,安分守己,把自己的工作出色完成对公司是一种责任,对自己是一种交代。

二、认识了很多新同事,交流广泛,知识面丰富了。新的环境必然有新的事物,接收新的事物必然有新的认识,新的认识必然有新的数据理念思想,对自己的专业知识和认识更上一层楼。

三、去旧迎新,迎接新的挑战,自我提升,给自己定下目标。20xx年是奋斗的一年,一年可以实现很多事情,可以改变很多事情,是选择继续奋斗还是碌碌无为,关键在于自己的行动。只有行动万事皆成事实,所以我给自己定下了三个目标:

1、全面提升自己,工作能独当一面。这样就能提高工作效率,不会延误工作进度。

2、数据能精确化,提高效率。

3、保持一颗上进心,永不熄灭。

最后,祝愿大家新春如意,事业有成,开开心心过一个好年

数据分析报告【第四篇】

一、确定分析目标

分析目标主要包括以下三个方面:

分析目的。

分析范围。

分析时间。

如下图所示,分析目标除了主要包括三个方面外,还有备注一栏,这里备注的是计算周期问题。强调一点,我们做运营数据分析的时候通常都会拿更新前和更新后的数据进行比较,因此我们的设定的分析周期一般都会跟着游戏实际的更新情况走。

二、分析综述

分析综述主要包括两方面的内容

1、上周/本周充值数据对比

充值总额

充值人数

服务器数

服务器平均充值

服务器平均充值人数

针对上述内容进行差额对比以及增减率对比,如游戏有特殊要求,可以适当增加其它数据内容。

2、上周/本周更新内容对比

主要陈列两周内分别更新的活动内容或一些重大调整。

三、一周运营数据分析

1、本周收入概况

日均充值金额,环比上周日均充值金额

用户ARPU值,环比上周ARPU值

简述与上周或之前的充值情况的比较,如上升还是下降、影响充值的较大的因素。

2、新用户概况

新用户就是新进游戏的玩家,这里主要介绍这些新玩家的动态数据,一般以两个月为总时长进行陈列比较,具体周期数据仍以周为单位。

新用户数据主要包括:安装下载数、创建角色数、安装→角色转化率、付费人数、创建角色→付费转化率、ARPU值、次日留存、三日留存、七日留存等,可根据游戏实际情况进行添加。

3、活跃用户概况

活跃用户概况主要包括三部分内容:

日均在线人数,环比上周实时在线人数,提升/下降百分比

日均付费用户登陆人数,环比上周付费登陆数,提升/下降百分比

日均活跃玩家数,环比日均活跃玩家数,提升/下降百分比

4、道具消费概况

道具方面的消费概况主要包括:

产出活动类别

道具分类

单类道具消费元宝,消费占比,环比上周

日均消费元宝,总消费元宝,环比上周下降/上升

简述活动效果较好/较差的道具分类

5、当前元宝库存

当前元宝库存是指玩家充了元宝还没花出去的存量,以及游戏中额外获得的元宝存量。例如,我充了1000块,拿了1w元宝,花了8K,我造成的存量是2K,当平台各服的元宝存量不断上涨,就代表消费点不够了,要不补新消费系统,要不上消费类的运营活动。

6、重点商业活动付费玩家参与情况

活动参与情况主要考虑以下几点:

付费群体类别,活跃付费玩家数

付费玩家的参与比例

付费玩家在活动中消费的元宝数

付费玩家在活动中消费的元宝占周消费元宝总数的比例

付费玩家的人均消费元宝数

根据活动的这些付费玩家的相关数据,判断该活动产生的效益以及玩家的接受程度。

如果数据不佳,则代表该活动不行,需深究其存在的问题,看看问题是出现在活动难度、活动的奖励不吸引、还是活动本身的可玩性太差。根据分析的原因在下次更新活动时判断是需要进行调整玩法设定还是替换成新活动。

另外,同一时期可能会推出多个活动,在进行单个活动数据分析时,也要横向比较各个活动的效果,对于下次运营其它产品,有个经验借鉴。

注:付费玩家数:活动期间登陆过游戏的玩家数;消费占比=活动道具总消费元宝/当周总消费元宝

四、游戏运营数据总分析

在简单分析完一周的运营情况之后,接下来将针对一定运营周期的数据进行详细分析。

1、近期充值概况

近期充值情况基本上是以一周时长为单位进行分析,主要分析内容包括:每周收入、收入增长率、当周日均收入、当周总付费人数、ARPU值、服务器数量、服均日收入等,可根据游戏实际情况适当增减分析类别。

2、新注册用户分析

因为是针对新注册用户的分析,因此这一块的分析与前面一周运营数据稍有重合。

这一块的分析重点在于各个渠道的数据比较,包括新注册用户比较、活跃用户比较、累积付费金额比较三部分内容。

3、活跃用户分析

前面的活跃用户分析主要是围绕一周每日的活跃用户分析,而这里的活跃用户分析则可以是两周、三周或者更长时间的分析,主要看实际游戏的需要。

活跃用户概况描述主要包括三部分内容:

日均在线人数,环比上周实时在线人数,提升/下降百分比

日均付费用户登陆人数,环比上周付费登陆数,提升/下降百分比

日均活跃玩家数,环比日均活跃玩家数,提升/下降百分比

注:这里描述的内容根据分析的目的走,不一定非得是本周与上周的比较。

注:老付费登陆数=剔除统计日新增付费玩家数

4、道具消耗分析

道具消耗分析主要包括三部分内容:

元宝消耗结构,如装备类、抽奖类、促销类等

每一类道具的具体元宝消耗情况分析

每一类道具在分析周期内的消费占比

另外,具体的文字描述分析这里不一一举例,参照着数据分析表的实际情况简单做个文字描述即可。对于一些销量很好的道具及销量不佳的道具可以重点品评,分析造成差异的原因,以便下次更新可以调整改进。

1)每周日均元宝消耗量

2)元宝消耗占比

5、付费玩家元宝情况

付费玩家的元宝情况主要分析:

获得元宝量,包括充值获得、游戏中获得

消耗元宝量,包括充值元宝消耗和赠送元宝消耗

元宝存量,包括充值存量和赠送存量

备注:

充值玩家总元宝来源=充值获得元宝+游戏内相关渠道获得赠送元宝

充值玩家元宝存量=元宝存量+赠送元宝存量

消耗元宝量=元宝消耗+赠送元宝消耗

6、重点游戏系统监控

由于每个游戏的系统众多,这里简单以获得紫卡伙伴和副本关卡为例做个简单介绍。

1)获得紫卡数分析

分析主要针对不同付费层级的玩家进行分析。在主流卡牌游戏中,紫卡通常是比较高级的卡牌,紫卡的拥有数量对于游戏的系统分析具有比较重要的意义。根据分析可以观察紫卡的拥有数量是否合理,例如大R与小R是否存在明显的拥有差异,紫卡是易得还是难得。分析过后才能对产出卡牌的概率以及获得渠道作相关调整。

2)副本系统监测

类似推图的副本,或者一些任务,都是需要我们关注的游戏重点。根据每个关卡玩家的通关参与数,可以简单的看出每个关卡玩家参与的情况,从而判断是否有关卡设定不合理或者数据异常。

其实除了系统监测,对于玩家的升级情况、商城的付费情况等都可以做详细的分析,主要看你的游戏处于哪个阶段,分析的重点在哪。

7、重点商业活动付费玩家参与情况

这里分析主要包括往期活动玩家的参与情况,或对于周期较长的活动进行阶段性的分析。这个分析与前面的活动分析类似,这里不再详细说明。

48 103842
");