笔算乘法教学反思不进位【汇集4篇】

网友 分享 时间:

【请您参阅】下面供您参考的“笔算乘法教学反思不进位【汇集4篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

笔算乘法教学反思不进位【第一篇】

今天我上了一节教学研讨课是多位数乘一位数(进位)乘法。此节课的教学目标是使学生经历算多位数乘一位数(进位)的计算过程,进一步学会乘法竖式的书写格式,了解竖式每一步的计算含义;培养学生独立思考、交流的学习方法及积极的学习态度;让学生体会数学知识与现实生活的密切联系。我采用135课堂教学模式进行教学活动,在课堂开始我利用多媒体课件到图书馆买书入手,创设了问题情景,提出计算问题;然后由学生自主探索,合作探究中解决问题的方法;最后在实践中巩固和运用方法。

新课标提出“让学生在生动具体的情景中学习数学”,我在课堂开始到图书馆买书入手,再现了学生熟悉的情景,激发了学生的学习兴趣,同时,计算设置在学生熟悉的具体情景之中,激活了学生原有的'知识与经验,使学生愿意去主动探索知识。

在探索笔算乘法的过程中,培养了学生自主学习的能力,接着,放手让学生用自己已有的知识经验去计算,学生积极地投入到交流讨论当中,我在自主学习卡中引导学生试着用竖式解决这一问题,有了上一节课的基础,学生通过认真的思考与合作交流得出了笔算乘法的方法。从学生运用已有知识解决问题,到相互交流探索笔算方法,学生始终处于学习的主体地位,在活动中学生经历了笔算乘法的计算方法的得出过程,体会了计算的用处,真正成为了学习的主人。

学生的每一个学习成果展示,我都进行了及时的评价,这大大激发了学生学习的热情,平时不爱发言的学生也都把小手举得老高,为了给本组加分,小组内成员团结一致,会的教不会的,说不好的我教你说,整个课堂充满了积极求学的场面。这不仅使学生产生爱学想学的尽头,同时培养了他们集体荣誉感,产生不给集体拖后腿的意识。

当然,在课堂中也有不足之处,例如,学生对算理的讲解还不够加强。课堂中本人还存在一些教学经验缺乏。这就需要我在今后的教学当中不断地总结经验,改进方法,真正做到“人人学有价值的数学;人人都能获得必需的数学;不同的人在数学上得到不同的发展”。

笔算乘法教学反思不进位【第二篇】

一个篮球24元,你能提出问题吗?(1)预设:问题:3个篮球多少元,算式怎么列,表示什么意思。等于多少,用到什么旧知识

师问:买10个篮球要多少钱,算式怎么列,等于多少,用到什么旧知识,24×10表示什么意思,再计算,这一连窜的问算式表示的意义为了更好的理解笔算乘法的意义。至于用到什么旧知识,主要使新知识不在新,为新旧知识搭好“脚手架”。渗透了转化思想。问:12个篮球要多少钱,算式怎么列(24×12),师再提出买十篮球要多少钱解决第一个问题时,我先让学生估一估,并连问:你能估算吗?怎么估?估大了还是估小了?因为之前刚刚学过,很容易就唤醒学生的已有的知识。估完后,问学生,能口算吗?既起到了复习的作用,也起到了铺垫的作用,也体现了尊重学生的知识起点。再通过引导,让学生了解笔算乘法的必要性,展开新课。

著名数学教育家弗赖登塔尔认为:“学习数学的唯一正确的方法是让学生‘再创造’”。即让学生通过数学活动自己去探究、去寻找正确的方法。这本节课中,在学习探究两位数乘两位数的计算方法时,通过交流,让学生充分展示学习的思路,让学生充分感受到知识发生、发展的过程。让学生真正自己领悟数学知识掌握数学技能。组织学生创新,鼓励学生发表自己的观点、介绍不同的计算方法。要求写出你的计算过程,有困难的同学可以向老师同学请教。

同桌交流:写好后和小组的伙伴交流计算方法,说一说分几步计算,每一步表示什么意思。

算法多样化是问题解决策略多样化的一种重要思想,它是培养学生创新意识的基础。新课标指出:笔算教学不应仅限于竖式计算,应鼓励学生探索和运用不同的方法计算。学生的个性差异是客观存在的,对同一道计算问题,由于学生的生活经验、认知水平和认知风格存在着差异,常常会出现不同的计算方法和解题策略,这正是学生具有的不同个性的体现。在本节课教学24×12时,放手学生试算,学生出现了多种不同的计算方法,有根据口算的方法来计算的;有把因数拆成两个一位数,利用以前学过的知识来计算的;有直接列竖式进行计算的;在学生独立思考解决的基础上,再让学生同伴交流,这样的教学,有利于培养学生独立思考问题和创新能力。有利于学生间的数学交流。而且在解决问题的过程中,使每一个学生都获得了成功的愉悦,使不同的人学到了不同的数学。

练习是一种有目的、有步骤、有指导的教学活动。有目的性的练习就是要教师在设计安排练习题时,要悉心钻研教材,紧紧围绕教学目标精心安排。也就是说教师在设计练习时必须明确每一道题的练习意义,确保一步一个脚印,步步到位。

只有这样才能真正实现练习的优化。因此在探索检验过程中我一共安排了4个层次的练习,1、半脱式的练习,2、把竖式转换成以填空式的形式出现,3、判断练习,4、计算,5、综合练习前两题主要是为理解算理服务的,后两题是为了巩固练习。计算是枯燥的,但也是有用的,引导学生能应用知识解决生活里相关的实际问题,体会数学的作用,逐步树立应用数学的意识,从而从“有用性”的外在角度刺激学生的主观能动性,让学生更积极主动更有兴趣的来学习今后的计算课。在学习数学知识的过程中渗透一种数学策略,掌握一种数学方法,使今后学生面对没出现过的题目、类型或其他生活中的问题,不再惊慌不已、束手无措也是我本节课要传达给学生的:原来新问题也不可怕,也只不过是旧知识的重新建构。

笔算乘法教学反思不进位【第三篇】

在教学本单元三位数乘两位数笔算乘法内容时,我改变了教学方式,希望通过引导学生自主学习、小组合作交流的学习方式,帮助学生掌握本单元的知识。所以,课的开始,我通过一道两位数乘两位数75×28,来唤起学生的已有知识,把新旧知识的衔接点找准,为学生能更好地学习新知做铺垫。所以,这道复习题是必不可少的。

三位数乘两位数的笔算方法(145×12)与两位数乘两位数的笔算方法大同小异,学生完全可以利用迁移类推的方法去解决新知,所以我让学生采用尝试学习法先自己独立解决三位数乘两位数的笔算,学生在尝试解题的过程中难免会出现错误,这是很正常的。所以。我让每组的第一个作对的孩子检查本组其他的同学,把有错的本子拿给老师看,这样借助学生的力量,老师不费吹灰之力就找到了全班的病号,(有一个错例在我的预设之外:一个学生第一步乘出的积的末尾写成了“5”,应该是“0”,这时我正好利用上我临时补上的课件:有一道题是怎么判断一道题的`尾数,即个位上的数字,,让学生学会利用尾数法很快判断计算结果的个位数字是几。)然后把错例板书到黑板上,充分利用现成的错误资源当做教学资源,我认为很有价值,学生也特别感兴趣。特别是结合枯燥的数据让学生结合本题去讲解每一步存在的实际意义(例如145×2表示火车两小时行的路程;145×10表示火车10小时行的路程;290+1450=1740表示2小时行的加上10小时行的就是火车12小时行的总路程),让学生结合现实的情境,理解三位数乘两位数的算理,使抽象的算理具体化,更便于学生理解和接受。

通过比较75×28与145×12的计算过程,在比较中明确新旧知识之间的联系与区别。在比较中,学生的知识不断得到整理与重组,知识网络得以不断充实和完善。在这里有一位学生提出了如果把145×12的竖式列成12在前,145在后的话,就得分别乘3次,这也是和两位数乘两位数不同的一点,这种情况的出现我也想到了,但是没两位数乘三位数的笔算时,我们可以交换两个因数的位置,把三位数写在前,两位数写在后,这样可以使笔算更简单、方便一些,这样既突出了本课教学的重点,又进一步完善了学生的认知结构,有利于学生合理、灵活地进行计算。

本课的练习题主要是从三位数乘两位数的笔算方法的掌握先着手,让学生通过填一填,进一步明确竖式中的每一步得数是怎么来的。然后通过两个实际生活的例子让学生去解决实际问题,把所学的知识应用于生活,然后通过纠错练习、开万宝箱这两题,把估算教学与笔算教学相结合,提高学生解决问题的能力,通过改错,把学生计算中易产生的错误加以纠正,从反面提高乘法计算的正确率。最后通过两个解决实际问题的检测题去检测学生对所学知识的掌握情况,以便老师及时了解学生的学习情况,来调整自己的教学,同时反射出自己教学中存在的一些问题,便于自己反思、改进。

三位数乘两位数的笔算分两段教学

第一段教学三位数乘两位数的笔算,使学生掌握笔算三位数乘两位数的基本方法;

第二段教学相应的乘数末尾有0的乘法笔算,并结合笔算引导学生自主掌握相关的乘法口算。

整个教学过程,我只是一个组织者、引导者,学生是主体,是探索者,由于学习方式具有开放性和探索性,学生的学习活动积极了、主动了。从作业和测验情况来看,本节课内容学生掌握得不错。

笔算乘法教学反思不进位【第四篇】

我教学的是《笔算乘法》的第一课时,本课时的内容是学习《笔算乘法》的引路课,也是进一步学习多位数乘法的基础。它是在学生已经比较熟练的掌握表内乘法,学会了整十、整百数乘一位数的口算、乘加两步计算混合运算和万以内数的组成的基础上教学的。

上完这节课,我觉得有些地方还是很成功的。

我以教材例题为情景情境,让学生经历解读信息,提出问题,解决问题的'过程,充分体现了以学生为主体。在解决第1个问题的过程中,首先,让学生了解笔算的必要必性;同时,通过几个措施理清算理和算法。最后通过对比,将估算、口算、笔算建立联系。问学生你有什么发现,结论是方法是一样的,让学生更深理解算理,同时感受到知识之间的内在联系,万变不离其中。第二个问题的解决是巩固2位数乘1位数的算理与算法。第三个问题的解决,是让学生体验解决问题的多种策略,让学生知道从不同的角度思考问题,算式不同,但结果是一样的。综合练习题目的是巩固多位数乘一位数的基础上,让学生体验算法的多样化。

解决第一个问题时,我先让学生估一估,并连问:你能估算吗?怎么估?估大了还是估小了?因为之前刚刚学过,很容易就唤醒学生的已有的知识。估完后,问学生,能口算吗?既起到了复习的作用,也起到了铺垫的作用,也体现了尊重学生的知识起点。再通过引导,让学生了解笔算乘法的必要性,展开新课。

练习设计有层次:基础题:一组笔算题。3×223×2223×2之前面设及的都是两位数乘一位数的笔算,此组题中有三位数乘一位数,先让学生说说223×2算理与算法,再让学生对比三道算式,通过对比得出结论,方法是一样的,再在223前面添一个2,让学生感悟。开放题:贯通算法,提升思维。

一、面对学生的多种解法,还可以站得更高。在解决第三个问题时,让学生分类,按解题思路的不同进行分类。对学生解题能力的培养会有所帮助。

二、31×2+33,应该问问学生31×2表示什么意思?而不只是为有新的解法而解题,是需要引导学生分析题意。

三、在开放题处,只局限于不进位,应适当渗透进位。

四、教师的话有些多,重复的太多。

48 2365643
");