数据分析师具体实施方案工作要求大全【范例8篇】

网友 分享 时间:

【请您参阅】下面供您参考的“数据分析师具体实施方案工作要求大全【范例8篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!

数据分析师实施方案工作要求【第一篇】

而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。

我们举两个通过数据分析获得成功的例子:

(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。

然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。

为此,我对自己的规划如下:

第一步:掌握基本的`数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。

第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。

第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。

数据分析师实施方案工作要求【第二篇】

1、主要协助分析师工作,包括数据整理、分析,行情分析、传达,技术分析、授课。

2、协助部门主管处理部门的日常事务;

3、协助部门部门做销售团队的数据统计及分析;

4、负责部门文化的建设和传播工作;

5、处理上级安排的其他工作。

1、喜欢金融,希望进入金融行业,实现财富自由的梦想;

2、需要具有良好的学习、沟通、分析判断、执行能力和团队协作精神;

3、有较强的人际沟通能力,文字组织能力和口头表达能力;

4、具备往管理岗位晋升的野心;

数据分析师实施方案工作要求【第三篇】

6、配合销售人员进行市场营销和客户培训。

1、中专及以上学历,经济、金融等相关专业;

2、具有金融分析投资经验,有分析师执业资格者优先;

3、具有丰富的金融基础理论知识,善于进行行业研究和挖掘;

4、熟悉外汇股票公司决策流程和各个交易管理系统;

5、具有较强的逻辑思维能力、创新和钻研精神;

6、具有很强的文字表达能力和金融分析能力;

7、具有很强的工作责任心和团队精神。

数据分析师实施方案工作要求【第四篇】

数据分析方法是通过什么方法去组合数据从而展现规律的环节。从根本目的上来说,数据分析的任务在于抽象数据形成有业务意义的结论。因为单纯的数据是毫无意义的,直接看数据是没有办法发现其中的规律的,只有通过使用分析方法将数据抽象处理后,人们才能看出隐藏在数据背后的规律。

数据分析方法选取是整个数据处理过程的核心,一般从分析的方法复杂度上来讲,我将其分为三个层级,即常规分析方法,统计学分析方法跟自建模型。我之所以这样区分有两个层面上的考虑,分别是抽象程度以及定制程度。

其中抽象程度是说,有些数据不需要加工,直接转成图形的方式呈现出来,就能够表现出业务人员所需要的业务意义,但有些业务需求,直接把数据转化成图形是难以看出来的,需要建立数据模型,将多个指标或一个指标的多个维度进行重组,最终产生出新的数据来,那么形成的这个抽象的结果就是业务人员所需要的业务结论了。基于这个原则,可以划分出常规分析方法和非常规分析方法。

那么另一个层面是定制程度,到今天数学的发展已经有很长的时间了,其中一些经典的分析方法已经沉淀,他们可以通用在多用分析目的中,适用于多种业务结论中,这些分析方法就属于通用分析方法,但有些业务需求确实少见,它所需要的分析方法就不可能完全基于通用方法,因此就会形成独立的分析方法,也就是专门的数学建模,这种情况下所形成的数学模型都是专门为这个业务主题定制的,因此无法适用于多个主题,这类分析方法就属于高度定制的,因此基于这一原则,将非常规分析方法细分为统计学分析方法和自建模型类。

常规分析方法不对数据做抽象的处理,主要是直接呈现原始数据,多用于针对固定的指标、且周期性的分析主题。直接通过原始数据来呈现业务意义,主要是通过趋势分析和占比分析来呈现,其分析方法对应同环比及帕累托分析这两类。同环比分析,其核心目的在于呈现本期与往期之间的差异,如销售量增长趋势;而帕累托分析则是呈现单一维度中的各个要素占比的排名,比如各个地市中本期的销售量增长趋势的排名,以及前百分之八十的增长量都由哪几个地市贡献这样的结论。常规分析方法已经成为最为基础的分析方法,在此也不详细介绍了。

统计学分析方法能够基于以往数据的规律来推导未来的趋势,其中可以分为多种规律总结的方式。根据原理多分为以下几大类,包括有目标结论的有指导学习算法,和没有目标结论的无指导学习算法,以及回归分析。

另外无指导的学习算法因为没有一个给定的目标结论,因此是将指标之中所有有类似属性的数据分别合并在一起,形成聚类的结果。比如最经典的啤酒与尿布分析,业务人员希望了解啤酒跟什么搭配在一起卖会更容易让大家接受,因此需要把所有的购买数据都放进来,然后计算后,得出其他各个商品与啤酒的关联程度或者是距离远近,也就是同时购买了啤酒的人群中,都有购买哪些其他的商品,然后会输出多种结果,比如尿布或者牛肉或者酸奶或者花生米等等,这每个商品都可以成为一个聚类结果,由于没有目标结论,因此这些聚类结果都可以参考,之后就是货品摆放人员尝试各种聚类结果来看效果提升程度。在这个案例中各个商品与啤酒的关联程度或者是距离远近就是算法本身了,这其中的逻辑也有很多中,包括apriori等关联规则、聚类算法等。

另外还有一大类是回归分析,简单说就是几个自变量加减乘除后就能得出因变量来,这样就可以推算未来因变量会是多少了。比如我们想知道活动覆盖率、产品价格、客户薪资水*、客户活跃度等指标与购买量是否有关系,以及如果有关系,那么能不能给出一个等式来,把这几个指标的数据输入进去后,就能够得到购买量,这个时候就需要回归分析了,通过把这些指标以及购买量输入系统,运算后即可分别得出,这些指标对购买量有没有作用,以及如果有作用,那么各个指标应该如何计算才能得出购买量来。回归分析包括线性及非线性回归分析等算法。

统计学分析方法还有很多,不过在今天多用上述几大类分析方法,另外在各个分析方法中,又有很多的不同算法,这部分也是需要分析人员去多多掌握的。

自建模型是在分析方法中最为高阶也是最具有挖掘价值的,在今天多用于金融领域,甚至业界专门为这个人群起了一个名字叫做宽客,这群人就是靠数学模型来分析金融市场。由于统计学分析方法所使用的算法也是具有局限性的,虽然统计学分析方法能够通用在各种场景中,但是它存在不精准的问题,在有指导和没有指导的学习算法中,得出的结论多为含有多体现在结论不精准上,而在金融这种锱铢必较的领域中,这种算法显然不能达到需求的精准度,因此数学家在这个领域中专门自建模型,来输入可以获得数据,得出投资建议来。在统计学分析方法中,回归分析最接近于数学模型的,但公式的复杂程度有限,而数学模型是完全自由的,能够将指标进行任意的组合,确保最终结论的有效性。

数据分析师实施方案工作要求【第五篇】

年龄:25。

教育经历:

院校:蓝翔技校。

专业:计算机软件。

学历:专科。

主修课程:

数据库原理、软件工程。

获奖情况:

连续2年获得校三好学生、二等学习优秀奖学金。

全国大学生计算机竞赛市二等奖。

项目经验:

201x、1x-至今。

单位:翰威特咨询公司分公司。

筛选分析调研数据,使用excel处理超过2万个样本数据,具有丰富的数据处理经验;

自我评价:本人性格开朗,思想正直,诚信,稳重。工作认真踏实,责任心强,善于独立思考,分析问题,解决问题。

数据分析师实施方案工作要求【第六篇】

位于*东南部的福建(三明、泉州、福州、宁德)、江西(南丰、广川)两省山岳地区,有着数量较多的一种以生土为主要建筑材料、生土与木结构相结合并不同程度使用石材的“土堡”建筑。这些土堡建筑以合院式建筑为主,规模宏,造型奇特,结构精巧,或建在海拔较高的山岗(高岗型),或离村庄不远的山坡(坡地型),或建在水田当中(田中型),或土堡与民居建在一起(混合型),与当地其他传统低矮民居组合成小不同的村落,服务于家族或村落的聚居防御需要。它们比福建土楼历史更悠久,既有着悠久的文化历诗统,又与周边自然环境完美融合,构成一组组和谐美妙的景观。其中,福建土堡最具代表性,数量也最多,而福建土堡又以三明市田、尤溪和永安三县留存数量最多、保存最完整、种类最齐全。

从20xx年至20xx年的五年时间里,三明土堡通过土堡课题专项调研、第三次全国文物普查、拍摄土堡资料宣传电视片、召开*福建土堡全国学术研讨会、举办土堡民俗文化节、福建土堡风光摄影展等系列活动,已初步摸清了三明境内土堡的基本情况:

1、土堡的创建历史:产生于隋末唐初,成熟于两宋,盛行于明清,并一直延续至今。

2、土堡的留存数量:200余座,约占总数量的十分之一。

3、范文top100土堡的建筑结构:内通廊式与合院式两种,并以合院式为主。

4、土堡的分布范围:福建、江西两省,并以福建为多;福建省内三明、泉州、福州、宁德四地市,并以三明地区为多;三明市内田、尤溪、永安、宁化、沙县、将乐、清流、明溪、泰宁、三元、梅列十一县(市、区),并以田、尤溪、永安为多。

5、土堡的主要功能:防御为主。

6、土堡的产生原因:生存需要。

二、福建土堡的认定。

关于福建土堡的定义,至今尚未有公开的认定,因此本文的定义只是个人的观点,若有谬误还请方家指正。可以从以下几个方面来探究:

1、三明土堡与土围(江西)、土楼(福建)、围拢屋(粤东)的异同,如下表。

尽管四者之间有差异,但共性是十分明显的,都具有防御性,只师能不同而已,土围、土堡以防御为主,而土楼、围拢屋以居住为主。

2、福建土堡是包括福建土楼在内的*南方乡土防御性建筑的鼻祖。

数据分析师实施方案工作要求【第七篇】

但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。

“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。

国内某大型招聘平台给出的数据分析师平均薪酬为:9724(取自1139份样本),且北京、上海、广州、深圳、杭州、南京、武汉、成都、长沙为大数据分析师需求量前十的城市。

数据分析师实施方案工作要求【第八篇】

1、要认真研究课程标准。

在课程改革中,教师是关键,教师对新课程的理解与参与是推进课程改革的前提。认真学习数学课程标准,对课改有所了解。课程标准明确规定了教学的目的、教学目标、教学的指导思想以及教学内容的确定和安排。继承传统,更新教学观念。

高中数学新课标指出:“丰富学生们的学习方式,改进学生们的学习方法是高中数学课程追求的基本理念。学生们的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。在高中数学教导中,教师的讲授仍然是重要的教学方式之一,但要注意的是必须关注学生们的主体参与,师生互动”。

2、合理使用教科书,提高课堂效益。

对教材内容,教学时需要作适当处理,适当补充或降低难度是备课必须处理的。灵活使用教材,才能在教学中少走弯路,提高教学质量。对教材中存在的一些问题,教师应认真理解课标,对课标要求的重点内容要作适量的补充;对教材中不符合学生们实际的题目要作适当的调整。此外,还应把握教材的“度”,不要想一步到位,如函数性质的教学,要多次螺旋上升,逐步加深。

3、改进学生们的学习方式,注意问题的提出、探究和解决。

教会学生们发现问题和提出问题的方法。以问题引导学生们去发现、探究、归纳、总结。引导他们更加主动、有兴趣的学,培养问题意识。

4、在课后作业,反馈练习中培养学生们自学能力。

课后作业和反馈练习、测试是检查学生们学习效果的重要手段。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生们的自学能力。在学完一课、一单元后,让学生们主动归纳总结,要求学生们尽量自己独立完成,以便正确反馈教学效果。

5、分层次教学。

我所教的两个班,层次差别大,1班主要是落后面的学生们,初中的基础差,高中的知识对他们来说就更增加了难度,而2班也是两极分化严重,前面16个学生们的基础扎实,成绩在中等以上,而后面的30个学生们的成绩却处于中下以下的水*,因此,不管是备课还是备练习,我都注重分层次教学,注意引导他们从基础做起,同时又不乏让他们可以开拓思维,积极动脑的提高性知识,让人人有的学,让人人学有获。

1、书本习题都较简单和基础,而我们的教辅题目偏难,加重了学生们的学习负担,而且学生们完成情况很不好。课时又不足,教学时间紧,没时间讲评这些练习题。

2、在教学中,经常出现一节课的教学任务完不成的现象,更少巩固练习的时间。勉强按规定时间讲完,一些学生们听得似懂非懂,造成差生越来越多。而且知识内容需要补充的内容有:乘法公式;因式分解的十字相乘法;一元二次方程及根与系数的关系;根式的运算;解不等式等知识。

3、虽然经常要求学生们课后要去完成教辅上的精编的题目,但是,相当部分的同学还是没办法完成。学生们的课业负担太重,有的学生们则是学习意识淡薄。

1、要处理好课时紧张与教学内容多的矛盾,加强对教材的研究;

2、注意对教辅材料题目的精编;

3、要加强对数学后进生的思想教育。

总之,作为一名刚教高中的新教师,对教材的不熟悉,对重难点的突破,对考点的把握,对学生们的方法指导,对高中教学的经验都是一个很大漏洞,我将把握好每一天,继续努力,争取更好的成绩。

48 2019698
");