圆柱体体积说课稿热选通用8篇
【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“圆柱体体积说课稿热选通用8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!
圆柱体体积说课稿【第一篇】
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、进一步提高学生解决问题的能力。
1、理解圆柱体积公式的推导过程。
2、能够初步地学会运用体积公式解决简单的实际问题。
3、理解圆柱体积公式的推导过程。
圆柱切割组合模具、小黑板。
一、创设情境,生成问题。
1、什么是体积?(物体所占空间的大小叫做物体的体积。)。
2、长方体的体积该怎样计算?归纳到底面积乘高上来。
3、圆的面积怎样计算?
二、探索交流,解决问题。
(启发学生思考。)。
2、把圆柱的底面分成许多相等的扇形(16等分),然后把圆柱沿高切开,可能会拼成怎样的图形?教师演示,引导学生进行观察。
3、思考:
(1)圆柱切开后可以拼成一个什么形体?(长方体)。
(2)通过实验你发现了什么?小组讨论:实验前后,什么变了?什么没变?讨论后,整理出来,再进行汇报。
(拼成的近似长方体体积大小没变,形状变了,拼成的近似长方体和圆柱相比,底面形状变了,由圆变成了近似长方形,而底面的面积大小没有发生变化。近似长方形的高就是圆柱的高,没有变化。)。
小组讨论:怎样计算圆柱的体积?
学生汇报讨论结果。
长方体的体积可以用底面积乘高来计算,而在推导过程中,长方体的底面积就是圆柱的底面积,高就是圆柱的高,所以圆柱的体积也可以用底面积乘高来计算。
师:圆柱的体积怎样计算?用字母公式,怎样表示?
板书:v=sh。
5、算一算:已知一根柱子的底面半径为米,高为5米。你能算出它的体积吗?
三、巩固应用练习。
四:课堂小结:
通过这节课你学会了哪些知识,有什么收获?
五:课后作业:
教材第9页,练一练第1、3、4、题。
圆柱体体积说课稿【第二篇】
面对复习的问题,学生回答的很好,长方体的体积=长×宽×高,当我指着长方体的底面时,学生就说,长方体的体积=底面积×高。学生对于圆的面积计算公式的的推导记忆犹新,这是很值得我高兴的。面对本课的重点解决问题,我满怀信心(两个复习问题的铺垫,学生会首先想起来把圆柱体按照圆的面积推导过程一样,来等分圆柱体),开始引导学生独立思考,怎样计算圆柱体的体积?正当大家苦思冥想的时候,一只手举得高高的:老师,我想出来一种。又是他,每次回答问题总是第一个举手,把别人的风头都给抢去了,他是一个爱表现的学生,为了不影响其他学生思考,每次我总是压一压他的积极性。给大家留一点思考的时间,等一会再说你的方法,谁知道这个积极分子不容我把话说完,已经拿着自己的圆柱体跑到讲台上了,(哎,让我怎么评价他呢,耐不住性子啊,再稳重一些多好啊?):我是这样想的,这是一个圆柱体的生日蛋糕,我想把它横着切成一个个圆片,分给你们吃。霎时间,下面的同学都笑了,过了一会,一个学生提问:切蛋糕,和圆柱体的体积有什么关系啊?有啊,这个圆柱体蛋糕的体积就是每一个圆片的面积乘上圆片的个数。这样解释完,下面的学生有的在笑,有的在议论,还有的再思考。我想想了,这是我该出手的时候了:你给大家解释一下,圆片是什么?圆片的个数又是什么?圆片就是圆柱的底面积,圆片的个数就是圆柱的高。
这种推导圆柱体体积的'计算方法,是出乎我意料之外的,因为,解决问题前,已经复习了长方体体积计算方法与圆的面积的推导方法,都是为把圆柱体进行等分转化成长方体体积来推导做铺垫的。谁曾向,这种用堆的过程来说明“底面积×高”计算圆柱体体积的道理,实际是积分思想,这是要到中学才学习的,学生不好理解的,竟然跑到预想方法之前了。真是计划不如变化快啊。课堂上的精彩总是不期而至啊。试想,如果,刚开始他举手,我就像以往一样”压一压他,让他和其他学生同步思考,说不定,这个想法在他脑海里转瞬即逝,那么这个精彩的火花就不会在课堂上呈现。
由此感悟到,课堂上,要给学生即兴发言的机会,及时的捕捉学生的思维灵感,精彩就会不期而至。《圆柱体的体积》这一课我学到了很多东西。
文档为doc格式。
圆柱体体积说课稿【第三篇】
1.经历认识圆柱体积,探索圆柱体积计算公式及简单应用的过程。
2.探索并掌握圆柱体积公式,能计算圆柱的体积。
3.在探索圆柱体积的过程中,进一步体会转化的数学思想,体验数学的探索性和挑战性,感受数学结论的确定性。
教学重点。
圆柱体积计算公式的推导过程。
教学难点。
圆柱体积计算公式的灵活运用。
教具准备。
教学过程。
一、复习铺垫。
1.请同学们回忆一下什么是物体的体积。
2.(出示幻灯片长方体)这是什么体?怎样计算它的体积?
同样的方法复习正方体。
3.长方体和正方体的体积可以用一个统一的公式来表示是怎样的?
[复习旧知,为后面推导圆柱体积计算公式做铺垫]。
二、情境导入。
师:同学们,你们都知道自己的生日吗?你们都喜欢过生日吗?
生:喜欢。
师:为什么?
生:有礼物,还有生日蛋糕。
师:今天是亮亮和爷爷的生日,你们观察一下书的图片,发现了什么?
生:亮亮的一家在一起过生日,亮亮和爷爷都有一个生日蛋糕,而且爷爷的生日蛋糕大,亮亮的生日蛋糕小。
生:亮亮和爷爷的生日蛋糕都是圆柱形的。
师:同学们观察得都很仔细,那么你们说说,爷爷的生日蛋糕,意味着什么?联系我们刚学过的.知识来说。
生:生日蛋糕大,就意味着它的体积大,生日蛋糕小,就是它的体积小。
师:你们真棒!那么想不想知道两个生日蛋糕的具体大小吗?今天我们就来探讨一个圆柱体的体积公式。
三、推导、论证。
1.拿出两个不易分辨体积大小的茶叶筒。
师:你们能说出哪个茶叶筒体积大吗?怎样比较两个茶叶筒体积的大小呢?
让学生思考和交流。
2.大家看圆柱的底面是一个圆形,在学习圆面积计算时,我们是把圆转化成哪种图形来计算的?(演示课件:圆转化成长方形)。
4.师生合作。用教具把圆柱等分成16份,拼成一个近似的长方体。再把圆柱等分32份同样拼成一个近似长方体。观察两次等分的相同点和不同点:
生:相同点:都可以拼成一个近似的长方体。
不同点:等分的份数越多,就起接近一个长方体。
5.同学们观察一下,拼成的长方体和圆柱体有什么关系?你们发现了什么?
6.学生汇报讨论结果,同时板书。
生:近似长方体的底面就是圆柱的底面积;近似长方体的高就是圆柱的高;近似长方体的体积就是圆柱的体积。
7.根据学生的发现引导学生推导出圆柱的体积=底面积×高,用字母表示v=sh。
四、实际应用。
1.要求圆柱体积,必须知道哪些条件?(生:底面积和高)。
2.如果已知底面积和高,你们会求圆柱的体积吗?
3.学生读题,特别提示统一单位。学生自主计算后全班交流。
4.反馈练习。p31页练一练1。
练一练2:理解题意,使学生理解方钢的体积与锻造后的圆柱形体积相等,再自主解答。
五、家庭作业。
测量你身边的圆柱的体积并向大家汇报你是怎样测量的?比一比看谁的方法最好?
圆柱体体积说课稿【第四篇】
本节课是在学习了圆柱的体积公式后进行的解决问题。这要求学生对圆柱的体积公式掌握的比较扎实,并要求理论与实际生活相结合。让学生通过经历发现和提出问题、分析和解决问题的完整过程,掌握问题解决的策略。使学生在解决问题的过程中体会转化、推理和变中有不变的数学思想。
在教学中教学我采用操作和演示、讲解和尝试练习相结合的方法,是新课与练习有机地融为一体,做到讲与练相结合。整节课我采用启发式教学。从导入新授到独立解答问题,环节清晰,教学目的明确。通过提问引导学生自主研究问题找到重难点,突破重难点。通过2个瓶子的倒置,把不规则的物体转化成规则物体,再来求它们的体积。在进行转化时,让学生明白倒置前空气的体积在倒置后属于哪一部分。倒置前水的体积在倒置后属于哪一部分。不管在倒置前还是倒置后,什么不变,什么变了?要求瓶子的体积实际是求什么?在课堂中学生积极参与,积极思考,小组合作学习。在学习中学习探究氛围高,体现高年级学科特点,并且灵活运用生命化课堂的四自模式、新技术,运用熟练,课堂中使用恰当有效。但在教学时提出的问题应该更简洁明了。在课堂上如何更好地关注中等偏下的学生,我时常为此感到纠结。
刚刚尝试建构高效的课堂教学范式,难免有困惑和疑问,今后我还要一如继往地与集体备课成员沟通、交流,共同探讨教改新路,让课堂教学更高效、更优质。
圆柱体体积说课稿【第五篇】
一、我在导入时,突破教材,有所创新圆柱的体积的导入,课本是先让学生回忆“长方体、正方体的体积都可以用它们的底面积乘高来计算”,再接着马上提问:“圆柱的体积怎样计算呢?”让学生们猜一猜。猜想计算方法固然有好处,但要让学生马上做实验理解圆柱体积计算公式的推导过程,我觉得这样教学引入,学生的思维跳跃得太快,衔接性不强,不利于学生理解和掌握实验的用意,课堂效果就会明显不佳。我认为,不妨在回忆了长方体、正方体体积计算方法之后,接着复习一下圆面积计算公式的推导过程,这样有助于学生猜想,并能更好地联系旧知,思维过度自然、流畅,便于学生的思维走向正确的方向,这时教师的引导才是行之有效的。
二、我教学新课时,实现人人参与,主动学习学生进行数学探究时,教师应给予充分的思考空间,创设实践操作的条件,营造出思考的环境氛围。教学“圆柱的体积”时,由于学校教学条件差,没有更多的学具提供给学生,只是由教师示范演示推导过程:把圆柱的底面分成若干份(例如,分成16等份),然后把圆柱切开,照课本上的图拼起来,圆柱体就转化成一个近似的长方体;接着教师指导学生悟出这个长方体的长相当于圆柱的哪一部分的长度,宽是圆柱哪一部分的长度,高是圆柱的哪一部分的`长度,圆柱的体积怎样计算的道理,从而推导出圆柱体积的计算公式。学生没有亲身参与操作,就缺乏情感空间感觉的体验,而且这部分又是小学阶段立体图形的教学难点,学生得不到充分的思考空间,也不利于教师营造思考的环境,不便于学生思考如何利用已知图形体积和教学思想去解决这一问题。学生缺乏行为、认知的投入和积极的情感投入,所以,课堂效果差就可想而知了。
圆柱体体积说课稿【第六篇】
教学目标是:使学生知道圆柱体的体积公式推导过程;理解并掌握圆柱体的体积公式及相关的推论。并能正确运用公式解决一些简单的实际问题。通过对圆柱体体积公式的教学,加深学生对立体图形的认识,培养学生的观察能力,抽象和概括能力及综合运用能力,发展学生的空间观念,同时渗透一些关于极限的辨证唯物主义思想。
学习本节课应具备的旧知识是:
1、长方体的体积公式及推导过程。
2、圆面积公式的推导过程。
在教学中就是要运用圆面积公式的推导方法,将圆柱体转化为长方体,从而由长方体体积公式推导出圆柱体体积公式。因此根据本节课的特点我采用的教学方法是:
1、有目的的运用启发引导的方法组织教学。
2、采用演示实验的方法,让学生观察比较,从而发现规律,找出体积公式。
3、适当采用“尝试——失败——总结——再尝试——再总结”的方法,引导学生找到推导公式的合理方法。
4、利用多变的练习,加深学生对公式的理解,找到公式的根本内涵。但是要注意循序渐进,由易到难,由简到繁。
在学法指导上,主要是让学生学会观察、比较,归纳概括出体积公式。通过直观实验,吸引学生主动、认真观察图形的拼接过程,积极回答观察结果,主动参与到教学中去,并且在教师的启发下,进行归纳概括。培养学生的自学能力及概括能力。
本节课所需教具为:圆柱体割拼组合教具及事先写好习题的小黑板。
教学一开始,首先复习。目的是:一是通过复习旧知识,为新课作好准备;二是引出新课。
一开始先复习体积的概念及长方体的体积公式。这个练习可采用提问的方式,但是这些知识已学过较长时间,所以适当的时侯教师要加以启发提示。
接下来,教师引导学生回忆长方体体积公式的推导过程,及圆面积公式的推导方法,为新课做准备。
然后,提问:圆柱体的特点是什么?圆柱体的侧面积、表面积公式是什么?由于这些内容刚刚学过,学生很容易回答,可以提问基础较差的学生,并加以鼓励,使他们树立信心,提高兴趣,以便学习新课。
通过以上复习,巩固了旧知识,为学习新知识做好了铺垫,同时调动了全体学生的学习兴趣。利用这一有利时机,教师及时引导、设疑:
这样就顺利转入了新课的学习。
这时教师出示圆柱体模型。
首先引导学生用长方体公式的推导方法尝试。提问:“我们学过的长方体体积是用单位体积的小正方体块来量出的,现在我们也用同样的方法来量一下,现在这个圆柱体的体积是多少?”
学生反复尝试后回答:“无法量出。”
这时教师再问:“什么地方量不出来?为什么?”
学生回答:“圆柱体的侧面是曲面,无法量出。”
在学生尝试失败的基础上,促使他们改变思路,去寻找新的'方法。这样充分利用学生的好奇心理,调动学生情绪,转入圆柱体体积公式的教学。
教师启发提问:“圆柱体上下两面是什么形?圆面积公式是怎么得到的?”通过学生的回答,引出新思路:用割拼的方法将它转化为其他的图形。
得到了新的方法以后,教师进行演示实验1:先将圆柱沿底面平分割成8等份,对拼成一个近似长方体。学生观察割拼过程。
教师提出问题:“这个圆柱体拼成了一个近似的什么立体图形?为什么说它是近似的?它的哪一部分不是长方体的组成部分?”
学生回答后,接着再进行演示实验2:将圆柱体沿底面平分16等份,再拼成近似的长方体。
再问:“这次是不是更象长方体了?”
这时教师启发学生想象;“把它平分成很多很多等份,这样拼成的图形将会怎样?”
教师总结:“将会无限趋近于长方体,并且最终会得到一个长方体。”
然后及时引导学生观察这个长方体,并把它与圆柱体进行比较,提问:“这个长方体的哪部分与圆柱体相同?”因为模型各面的颜色不同,所以学生会很快回答出来:“底面积与高。”
“那么这个长方体体积与圆柱体体积有什么关系?”学生回答:“相同。”
“长方体的体积是怎样计算的?”学生回答:“底面积乘以高。”
“那么圆柱体是否也可以这样算呢?”学生回答:“是的。”
这时教师根据学生的回答,及时板书这两个公式。
通过以上的教学,引导学生归纳概括出了圆柱体的体积公式。这样先通过复习做知识的铺垫,然后由学生进行尝试,充分运用思维的迁移规律,用圆面积公式的推导方法搭起了桥梁,顺利地实现了本节课的第一个目标。并且在推导过程中渗透了关于极限的辨证唯物主义思想。
学生通过尝试得到了成功的喜悦,思想高度兴奋。教师及时利用这一时机,将公式向深处拓展。设问:“如果不知道圆柱体的底面积和高,怎么求体积?”学生考虑,教师出示尝试题:
1、已知圆柱体的底面半径和高,怎样求体积?
2、已知圆柱体的底面直径和高,怎样求体积?
3、已知圆柱体的底面周长和高,怎样求体积?
4、已知圆柱体的侧面积和高,怎样求体积?
学生分组讨论。讨论完毕后,每组选一名代表回答,其他同学做适当补充。学生回答完毕后,教师及时进行总结,并且板书有关公式的推论。
通过以上练习,避免了学生只注意了公式的表面特征,而忽略了公式的本质特征。使学生明确,不论条件怎样变化,最终都要归到底面积乘以高上来。从而使学生理解了本公式的内涵,为灵活运用公式做好了知识的准备。
最后要求学生用字母表示公式。由于此方法学生早已熟悉,所以可全班集体回答。
学生理解和掌握了公式后,教师及时出示习题,指导学生将公式应用于实际:
(出示准备好的小黑板)。
提问:“这两道题是否要进行单位换算?各应选用什么公式?”学生回答完毕后,一起独立完成。教师巡视检查,发现问题,及时补救。
最后,对本节课进行小结。提出应用公式时应注意的问题:1、仔细审题,弄清条件的变化。2、单位名称要统一。
布置课后作业。
本节课到此结束。
圆柱体体积说课稿【第七篇】
1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。
2、初步学会用转化的数学思想和方法,解决实际问题的能力。
3、渗透转化思想,培养学生的自主探索意识。
一、复习。
1、长方体的体积公式是什么?正方体呢?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高)。
2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。(删掉)。
3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。
二、新课。
(1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示)。
(2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体)。
反复播放这个过程,引导学生观察思考,讨论:在变化的过程中,什么变了什么没变?
长方体和圆柱体的底面积和体积有怎样的关系?
学生说演示过程,总结推倒公式。
(3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,v=sh)。
圆柱体体积说课稿【第八篇】
本节课是人教版六年小学数学课本第十二册第三单元第二小节第一课时。内容包括圆柱体的体积计算公式的推导和运用公式计算它的体积。
2、本节课在教材中所处的地位和作用。
《圆柱和圆锥》这一单元是小学阶段学习几何形体知识的最后部分,是几何知识的综合运用。学好这部分知识,为今后学习复杂的形体知识打下扎实的基础,是后继学习的前提。
3、教材的重点和难点。
由于圆柱体积计算是圆锥体积计算的基础,因此圆柱体积和应用是本节课教学重点。其中,圆柱体积计算公社的推导过程比较复杂,需要用转化的方法来考虑,推导过程要有一定的逻辑推理能力,因此,推导圆柱体积公式的过程是本节课的难点。
4、教学目标。
(1)知道圆柱体积计算公式的推导过程,会应用该公式计算圆柱的体积。
(2)初步建立空间观念和逻辑推理能力。
(3)知道知识间是可以互相转化的。
从形式已有的知识水平和认识规律出发,为了更好地突出重点,化解难点,扫清学生认知上的思维障碍,在实施教学过程中,主要体现以下几个特点:
1、直观演示,操作发现。
教师充分利用直观教具演示,引导学生观察比较,再让学生动手操作讨论,使学生在丰富感性认识的基础上,在老师的指导下,推导出圆柱体积计算的公式。从而使学生从感性认识上升到理性认识,体会知识的由来,并通过已学知识解决实际问题,充分发挥了直观教学在知识形成过程中的积极作用,同时也培养了学生学习数学的能力和学习习惯。
2、巧设疑问,体现两“主”
发展能力的目的。
3、运用迁移,深化提高。
运用知识的迁移规律,培养学生利用旧知学习新知的能力,从而使学生主动学习,掌握知识,形成技能。
课堂教学中,不是老师单纯地传授知识,而是在老师的指引下,让学生自己学,任何人都不能替代学生学习。所以要把教法融于学法中,在学法中体现教法。
本节课的教学,使学生掌握一些基本的学习方法。
1、学会通过观察、比较、推理能概括出圆柱体积的推导过程。
2、学会利用旧知转化成新知,解决新问题的能力。
3、学会利用知识的迁移规律,把知识转化成相应的技能,从而提高灵活运用的能力。
对本节课的教学,我们设计了以下几个环节。
(一)复习旧知识,为引入新知识作准备。
1、求下面各圆的面积(口算),单位为厘米。
(1)半径为1厘米;
(2)直径为4厘米;
(3)周长为厘米。
2、什么叫做体积?怎样计算长方体的体积?
(二)导入新课,隐射教学目标。
1、观察比较:出示几组圆柱体实物(同底等高、同底不等高、等高不等底),引导学生观察比较,老师提出问题:通过观察,你想知道些什么?了解些什么?引导学生产生疑问后,教师这时交待,我们今天要学习的新知识,就能很好地解决这个问题(揭示课题)。让学生自行设疑,教师向学生交待学习任务,使学生对新知识产生强烈的求知欲望,从而进入最佳的学习状态。
2、展示学习目标,学生认读目标。
教师通过展示目标,学生认读目标,这时学生就能清楚地知道了学习的主要任务和要求,从而把教师的教学目标,转化成了学生的学习目标。使学生带着目标,有目的、有准备地学习下一步的新知识,学生就真正能成为学习的主人,也使教学变得更加明确具体,可操作、可检测。同时也能激发起全体学生的参与达标意识,学生的主体地位就充分地显示出来了。
(三)导入新课,实施教学目标。
1、设疑:要判断圆柱体积的大小,究竟哪个大?哪个小?到底圆柱的体积与什么有关呢?能不能把圆柱转化成我们学过的立体图形来计算它的体积?这里老师引导学生回忆圆的面积公式的推导过程,教师出示投影,帮助学生思考。
2、演示操作,揭示新知。
引导学生用字母表示出来,最后让学生看书质疑。
这部分教学设计意图:根据教材特点,学生的认知过程,充分调动学生的学习热情,激发求知欲望,调动学生的各种感官,完成从演示——观察——操作——比较——归纳——推理的认识过程,让知识在观察、操作、比较中内化,实现由感性到理性,由具体到抽象,这种教学方法符合学生的认知规律,有助于突破难点,化解难点。
关于难点的突破,我们主要从以下几个方面着手:
(1)引导学生通过观察比较,明确圆柱体的体积与它的底面积和高有关。
(2)运用知识迁移的规律,启发引导,层层深入促进学生在积极的思维中获得新知识。
(3)充分利用直观教具,师生互动,通过演示操作,帮助学生找出两种几何形体转化前后的关系。
(4)根据新旧知识的连接点,精心设计讨论内容,分散难点,促进知识的形成。
3、运用。
出示例1:先由学生自己尝试练习,请一位学生板演,集体讲评时提问学生,在解题时要注意什么?让学生自己来概括总结,通过学生的语言说出:
(1)单位要统一。
(2)求出的是体积要用体积单位。
在掌握了圆柱体积计算的方法之后,安排例1进行尝试练习,这样既可以调动学生的学习积极性和主动性,又可以培养学生学习新知识的能力,同时把所学知识转化为相应的技能。
(四)巩固练习,检验目标。
2、完成练习六第2题。
通过练习,巩固新知识,加深对新知识的理解,把所学知识进一步转化为能力,在练习中发展智力,培养优良的思维品质和学习习惯。
3、变式练习:已知圆柱的体积、底面积,求圆柱的高。
这道题的安排是对所学内容的深化,在掌握基础知识的前提下,培养思维的灵活性,同时深化教学内容,防止思维定势。
4、动手实践:让学生测量自带的圆柱体。
这道题的设计,一方面培养了学生解决实际问题的能力,另一方面也加深了对圆柱体积计算公式的理解,同时数学知识也和学生的生活实际结合起来,使学生明白,我们所学的数学是身边的数学,是有趣的、有用的数学,从而激发学生的学习兴趣。
(五)总结全课,深化教学目标。