倒数教学设计的认识和理念【5篇】

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“倒数教学设计的认识和理念【5篇】”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

倒数教学设计的认识和理念【第一篇】

1、理解倒数的意义,掌握求一个数倒数的方法,能熟练地写出一个数的倒数。

2、引导同学自主合作交流学习,结合教学实际培养同学的笼统概括能力,激发同学学习的兴趣。

理解倒数的意义,掌握求倒数的方法。

熟练写出一个数的倒数。

多媒体课件。

一、情境导入。

1、口算。

5/12×2/5=15/7×7/5=11/8×8/13=。

5/21×1/5=3/16×7/3=8/21×7/8=。

先独立考虑,再指名口算订正。

2、比一比,看谁算得又对又快:

2/3×3/2=2×1/2=11/8×8/11=。

1/10×10=7/9×9/7=1/7×7=。

6/5×5/6=1/5×5=22/35×35/22=。

同学先独立口算,再口答订正。观察这些算式,说说自身有什么发现。

二、合作探索。

1、小组合作交流:

(1)和同桌说一说你的发现。

(2)请你自身举出3个像上面这样的乘法式子。

小组代表说说有什么发现。指名说说自身举出的例子。

教师:像这样的乘积是1的两个数我们说它们的关系是互为倒数。

教师:关于倒数的知识,你已经有哪些认识?(同学说说自身的已有认识)。

教师:书上又是怎样讲解倒数的呢?我们一起来读一读。

阅读教材,进一步理解。

教师:现在谁来说一说自身是怎样理解倒数的?

同学口答,教师小结:假如两个数的乘积是1,那么我们称其中一个数是另一个数的倒数,并称这两个数互为倒数。

出示:乘积是1的两个数互为倒数。读一读,强调概念中的关键词:“乘积”、“互为”。

2、强化概念理解。

你认为下面这两种说法是否正确?

(1)2/3是倒数。

(2)得数是1的两个数互为倒数。

同学先独立考虑,再口答,说明理由。

倒数教学设计的认识和理念【第二篇】

本班级学生在学习本课时内容时,已经学会了分数乘法的计算,在具备分数乘法计算能力的基础上进行学习《倒数的认识》,我相信本班级学生能顺利地完成这一课时内容的学习,且学会这一课时也将为以后学习分数除法打下坚实的基础。

1、理解倒数的意义,掌握求倒数的方法,并能正确、熟练地求出一个数的倒数。

2、在充分的观察、思考、分析、讨论活动中,培养学生的思维能力和灵活解决问题的能力。

3、通过本节课的学习,激发学生学习数学的兴趣,让学生体验成功的快乐。

重点:倒数的意义与求法。

难点:1、0的倒数,整数、小数、带分数的倒数的求法。

课件(或练习张贴纸)。

同学们,我们已经学会了分数乘法的计算。这节课我们将运用分数乘法的知识去解决新的问题,大家有信心学好吗?请看大屏幕。课件依次展示(一).(二):

(一)同学们认识以下各组汉字吗?请仔细观察每组汉字,你有何发现?

吴——吞杏——呆干——士。

(二)仔细观察下列各组算式,再进行计算。

(三)计算过后,你们发现了什么?

(四)指出今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

答后组织学生进行一场写乘积是1的任意两个数的算式的比赛。(限时1分钟)。

(五)学生汇报,教师有选择地进行板书。

对学生的学习成果加以肯定表扬。进而追问:

1,如果给你们充足的时间,你们还能写出多少个这样的乘法算式?(指名让学生回答)。

2,那么你们是根据什么条件写出这么多的算式呢?(思考后指名让学生回答并集体交流订正。)。

(六)揭示倒数的意义:刚才同学们所写的两个数的乘积都是1。像这样乘积是1的两个数,我们把它们称之为互为倒数。

板书:乘积是1的两个数叫做互为倒数。(生齐读,师让生划出关键词进行交流熟记。)。

(七)举例说明倒数的意义。

1,黑板上所写的两个数的乘积都是1,所以它们互为倒数。比如和乘积是1,我们就说和互为倒数,或的倒数是、是的倒数。

板出:和互为倒数的倒数是是的倒数。

2,为什么乘积是1的两个数不直接说是倒数,而要说“互为”倒数呢?(思考后指名学生回答)。

3,指出倒数是表示两个数之间的关系,它们是相互依存的,所以必须说一个数是另一个数的倒数,而不能孤立地说某一个数是倒数。以前我们学过这种两数间相互依存关系的知识吗?(预设:约数和倍数。)。

4,举例引导学生认识今天学习的倒数与约数、倍数一样都是表示两个数之间的关系,必须是相互依存,而不能独立地存在。5和的积是1,我们就说……(生说)×=1,这两个数的关系可以怎么说?(生说)。

5,同学们都学得不错,现在老师要考考大家是不是真正理解了倒数的意义。

(八)课件出示测试题。

1、判断。

1.得数是1的两个数叫做互为倒数。()。

2.因为10×=1,所以10是倒数,是倒数。()。

3.因为+=1,所以是的倒数。()。

2、口答练习。

1×()=1×()=1×()=1×()=1。

下面哪两个数互为倒数。(连线)注:以下为例7学习内容。

二、探索求一个数的倒数的方法。

(一)引导观察,发现特征:

1,我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起观察一下刚才的这些例子,看有何发现?(观察后指名学生回答)。

2、指出分子和分母调换了位置,相乘时分子和分母就可以完全约分,得到乘积是1。

3、根据这一特点你能写出一个数的倒数吗?

4、试一试:写出、的倒数。(完后指名板演,集体交流订正)。

5、引导小结:求一个数的倒数的方法,只要把分数分子分母调换位置。

(二)思考讨论,延伸运用:1,除了真假分数外,其它数的倒数你们能写出来吗?

2,课件出示讨论题:

(1)18的倒数是什么?1的倒数是什么?0的倒数呢?

(2)的倒数是什么?

(3)的倒数是什么?

3,练习:写出下列各数的倒数:

4,我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。(生思后指名说)。

5,引导总结:求一个分数的倒数,只要把分子分母调换位置。如果是求一个带分数的倒数时要先化成假分数;求一个小数的倒数时要先化成分数(最简分数);求一个整数(0除外)的倒数时,可以把这个整数看成分母是1的分数;然后再调换分子分母的位置。(让生齐读)。

三、练习巩固,加深认识。

1、请打开课本p50阅看,把你认为重要的划起来读一读。

2、完成“练一练”。

写出下面各数的倒数。

8

(1)完后问学生的倒数可以这样写吗?=。(预设:1除外互为倒数的两个数是不会相等的。)。

(2)师:我们在书写时要写清谁是谁的倒数,或谁的倒数是谁。

3、先说说下面每组数的倒数,再看看你能发现什么?

(1)的倒数是();的倒数是();的倒数是();

(2)的倒数是();的倒数是();的倒数是();

(3)的倒数是();的倒数是();的倒数是();

(4)3的倒数是();9的倒数是();14的倒数是();

4、填空。

7×()=×()=()×=×()=1。

5、独立完成课本p51练习十第1-6题,师巡视。完后师问生答进行对照,共同订正。

四、课堂总结:今天我们学会了什么知识?还有不理解的地方吗?

五、布置作业:练习十第2、3题。

将本文的word文档下载到电脑,方便收藏和打印。

倒数教学设计的认识和理念【第三篇】

教材首先让学生观察乘积是1的算式,引出倒数的意义;根据倒数的意义,求一个数的倒数是应该用1除以这个数,但学生尚未学习分数除法,因此,教材接着运用不完全归纳法让学生寻找求一个数的倒数的方法。

(1)知识目标:使学生理解倒数的意义,掌握求倒数的方法,并能正确熟练的求出倒数。

(2)能力目标:采用自学与小组讨论的方法进行教学,进一步培养学生的自主学习的能力,提高学生观察、比较、抽象、归纳以及合作学习的能力。

(3)情感目标:提高学生学习数学的兴趣,发展学生质疑的习惯。

:知道倒数的意义和会求一个数的倒数

:1、0的倒数的求法。

:课件

一、课前谈话:

师:今天老师很高兴和大家上课,所以上课前老师想和大家互相成为好朋友。

生:好!

师:那你想怎样表述我们的关系?

生: 我们双方面互为朋友,也可以说成“老师是你的朋友”,“你是老师的朋友”。 这样学生对马上接触到的“互为倒数”就比较容易理解了。

二、揭示倒数的意义

师:对,今天我们要研究的就是乘积是1的两个数。你们还能写出乘积是1的两个数吗?

生:(齐)能!

师:那好,我们就进行一个小小的比赛。请大家准备好课堂练习本,我给大家一定的时间,请你写出乘积是1的任意两个数,看谁写得多,而且能写出不同的类型。

准备好了吗?开始??

师:时间到,停!谁愿意把你写的念出来,和大家共同分享?

(生读,师有选择的板书在黑板上。 )

师:这么短的时间内就能写出这么多乘积是1的两个数,不错。

师:如果给你们充足的时间,你们还能写多少个这样的乘法算式?

生:无数个

出示例7

师:那请你们来帮帮忙,找出乘积是1的两个数。

(学生个别回答)

师:你们找的这些与之前写的所有算式都有怎样的共同点?

生:乘积都是1。

师:你知道吗?揭示意义 教师板书:乘积是1的两个数叫做互为倒数。生齐读。

师:3/8和8/3互为倒数!我们还可以怎么说呢。

生:3/8的倒数是8/3;8/3的倒数是3/8。

生1:“互为”是指两个数的关系。

生2:“互为”说明这两个数的关系是相互依存的。

师:2/5和5/2的积是1,我们就说??(生齐说)

师:7/10和10/7的乘积是1,这两个数的关系可以怎么说?请您告诉你的同桌。

(学生活动)

(小结:刚才我们就认识了倒数的意义,知道乘积是1的两个数互为倒数,而且倒数不能单独存在,是相互依存的。)

探索求一个倒数的方法

师:非常好!我们知道了倒数的意义,那么互为倒数的两个数有什么特点呢?我们一起来观察一下刚才的这些例子。

生1:互为倒数的两个数分子和分母调换了位置。

师:同意吗?

生:同意。

师:根据这一特点你能写出一个数的倒数吗?

生:能

师:试一试!

师在黑板上出示3/5 7/2 ,写出它们的倒数。

师:那5()的倒数是什么?它可是没有分子和分母呀? 还有1 又1/8呢?

生:把5看成是分母是1的分数,再把分子分母调换位置。

求小数的倒数的方法:小数 求带分数的倒数的方法:带分数

三、 分数倒数。 倒数。 假分数

师:那1 的倒数是几呢?(学生很快就说出来了,并说明了理由)

0的倒数呢?

师:为什么?

生1:因为0和任何数相乘都得0,不可能得1。

师:刚才一个同学提出分子是0的分数,实际上就等于0,0可以看成是0/2、0/3、??把这此分数的分子分母调换位置后。。。。。。(生齐:分母就为0了,而分母不可以为0。) 师:我们求了这么多数的倒数,谁来总结一下求一个数的倒数的方法。

生1:求一个数的倒数,只要把分子分母调换位置。

生2:如果是求一个整数的倒数,可以把这个整数看成是分母是1的分数,然后再调换分子分母的位置。

生3:1 的倒数是1,0没有倒数。

(生齐读求一个数倒数的方法。 )

四、巩固练习

1、打开书,阅读课本p34,把你认为重要的划起来。

2、完成练一练。

(1)学生在书上完成,教师巡视,请同学板演。注意学生的书写格式是否正确。

(2)发现一学生书写有误,与该生交流。

(3)用展台展示该生的错误。

师:这样写可以吗?(4/11=11/4)

生:不可以!

师:为什么?

生1:比如4/11的倒数是11/4,4/11是真分数,11/4另一个是假分数,它们是不可能相等的。

(4)师:对,互为倒数的两个数是不会相等的(1除外)。我们在书写时要写清谁是谁的倒数,或谁的倒数是谁,如老师黑板上写的一样。

3、小游戏:同桌互相出一题,对方说出答案。

4、先说说下面每组数的倒数,再看看你能发现什么?

(1)3/4的倒数是( ) (2)9/7的倒数是( )

2/5的倒数是( )10/3的倒数是( )

4/7的倒数是( ) 6/5的倒数是( )

(3)1/3的倒数是( ) (4)3的倒数是( )

1/10的倒数是( )9的倒数是( )

1/13的倒数是( )14的倒数是( )

由学生说出各数的倒数。然后

师:请你仔细观察,看能从中发现什么,发现得越多越好。

师:小组间可以先互相说一说。

汇报:

生1:我从第一组中发现真分数的倒数都是假分数。

生2:我从第二组中发现假分数的倒数是真分数或者假分数。

生3:真分数的倒数都小于1,假分数的倒数大于1。 假分数的倒数也可能等于1。 生4:我发现分子是1的分数。

4、填空:

7×( )=15/2×( )=( )×3又2/3=×( )=1

五、课堂小结

1、小结:今天我们学习了什么???

2、学了倒数有什么用呢?

大家课后可去思考一下。

倒数的认识

乘积是1的两个数互为倒数 1的倒数是1。0没有倒数。

的倒数10 5的倒数是5 1又1/8的倒数是8/9 。

(=1/10) (5=5/1) (1又1/8=9/8)

求小数的`倒数的方法: 求带分数的倒数的方法:带分数

分数假分数 倒数。 倒数。

倒数教学设计的认识和理念【第四篇】

“倒数的认识”是人教版九年义务教育六年制小学数学第十一册第三单元第一课的内容。本节课是在学生学习了分数乘法的基础上进行教学的,它是分数乘法计算的后继内容,同时又是学习分数除法的先备条件,是属于承上启下的知识类型,主要包含两部分的知识:一是倒数的意义,二是求一个数倒数的方法。内容看似简单,但对学生来说比较抽象,难理解。根据对教材的认识和分析,结合学生实际,我拟订了如下教学目标:

教学目标。

根据对教材的认识和分析,结合学生实际,我拟订了如下教学目标:

(1)让学生在具体情境中理解倒数的意义,并掌握求一个数倒数的方法,会求一个数的倒数。

(2)让学生主动参与观察、猜测、交流等活动,经历探索求倒数的方法的过程。

(3)通过自主探索、合作交流,培养学生爱学数学、乐学数学的情感。

教学重点和难点。

倒数的引入是为分数除法作准备的,所以本课的教学重点是让学生熟练掌握求一个数(包括分数、小数、自然数等)的倒数的法,教学的难点是帮助学生理解倒数的意义,尤其是互为倒数的`两个数间相互依存的关系。

本课我采用了发现式教学法。教师只是通过组织者,引导者与合作者的身份,引导学生主动参与到整个学习过程中去,让学生自己组织学习材料,给学生提供放手的思维空间,并尊重学生的自主性,允许学生在探究新知中犯错误,并在修正错误的过程中体会成功,特别是注重情境的创设,如创设“找朋友”、“我来当名医”、“火眼金睛”等情境,以平等宽容的态度激起学生的探究热情。

1、观察、比较的方法。

倒数的意义是从几组乘积是1的算式引入的,因此,指导学生进行有效的观察比较这几组算式的共同点和不同点可以进一步培养学生的观察、分析能力,加深对倒数的意义的理解和识记。

2、合作交流的学习方法。

本课的部分教学环节的实施采用放手让学生自由讨论、相互交流的方式,这样就提高了学生学习的主动性和积极性,发挥了学生间的互补作用,增强合作意识,培养团结协作精神。

3、自学尝试的方法。

在倒数的意义和求一个数倒数的方法的学习中,指导学生自学和尝试性的解答,最后再引导学生对照课本,进行比较,促使学生仔细认真阅读课本,养成良好的学习习惯,培养学生的创新精神和创造能力。

(一)激情导入。

1、小故事。

从前,大清皇帝乾隆喜欢旅游,有一次,他来到一家天然居大酒楼吃饭,乾隆看到这里环境非常好,像是来到了天上仙境一般,于是写了一副非常有趣的对联“客上天然居,居然天上客。”

这副对联有趣在哪里呢?(可以倒着说)。

后来民间有人对出了绝妙的下联:僧游云隐寺,寺隐云游僧。你看对得多好。这幅对联无论顺读、倒读皆能成联,贴切而不混乱,从而产生了引人注目的效果。成为了千古佳联。

在我们平常的语文学习中也有这种类似的现象。

2、“吞”“杏”,问:这是什么结构的字?交换上下两部分,观察是什么字?还有这样的词语,现实,牛奶、字的顺序颠倒了,词语的意思也变了。

真奇妙,把一个字的上下部分交换就可能会变成另外一个我们认识的字,其实,在数学里两个数之间也有这种有趣的关系。

(二)新授。

我们今天就来学习这样关系的两个数。板书:倒数、这个字会读吗?齐读课题。

1、出示分数,你能照刚才的操作方法,写出另外一个分数吗?你是怎么做的?

2、迅速地算出这两个数的乘积,比比看谁算的快!

3、讨论:通过刚才的计算你发现了什么?

4、观察一下,这三组分数有什么特点?(他们的乘积都是1)。

像这样,乘积是1的两个数我们就说其中一个是另一个数的倒数,比如:x是x的倒数,也可以说这2个数互为倒数。

那你能说说怎样的两个数互为倒数呢?

5、交流讨论结果,老师板书。(乘积是1的两个数)。

6、师由此引出倒数的意义,课件出示:生齐读倒数的意义。

你觉得这句话中哪些字非常关键呢?

追问:你是怎么理解“互为”的意思?

是倒数这样说对吗?

也就是这2个数是相互依存的关系、在哪里我们还学习过相互依存的数学概念?

谁能像老师一样,说说哪两个数互为倒数。

7、问:老师随意写出2个数,你能判断这2个数是不是互为倒数吗?说明理由。

板书xx——。

8、判断一个数的倒数,大家会了,那现在就挑选一个你喜欢的数来求它的倒数,

你最喜欢求哪个数的倒数,为什么?

119030。

9、通过练习,请思考一下怎么求一个数的倒数呢?

10、统一求倒数的方法:求一个数(0除外)的倒数,可以把这个数的分子分母调换位置。

11、讨论:所有数都能求它的倒数吗?

(三)巩固练习。

1、找朋友。

2、火眼金睛。

3、我来当名医。

(四)课堂小结。

不仅文学中有“倒”的现象,数学中有倒数,而且自然界中也有这么美丽的景观。(课件欣赏美丽的自然风景。)在人类的社会发展过程中,有很多的现象有着惊人的相似,只要我们善于观察,做一个有心人,我们一定能从中体会到无穷的乐趣。

乘积是1的两个数互为倒数。

求一个数(0除外)的倒数只要把这个数的分子分母调换位置。

×=1×=1×=1。

倒数教学设计的认识和理念【第五篇】

3、学生汇报。

4、同学们观察的非常仔细,这种现象在数学中也有,今天这堂课我们就来研究倒数的知识。(板书课题:倒数的认识)。

1、能够理解和掌握倒数的意义。

2、学习求一个数的倒数的方法,能正确地求出一个数的倒数。

1、课件出示例1的算式,开展小组活动:算一算,找一找,这组算式有什么特点?

2、小组汇报交流。(通过计算,发现每组两个数的乘积都是1,还发现了相乘的两个分数的分子和分母的位置是颠倒的)。

3、同学们发现了每组算式两个分数的分子与分母正好颠倒了位置,也发现了每组两个数的乘积都是1,我们现在就可以得出倒数的定义了:乘积是1的两个数互为倒数。(板书)。

4、提问“互为”是什么意思?(倒数是指两个数之间的关系,这两个数相互依存,一个数不能叫倒数。

5、强调“两个数”“乘积是1”

6、出示0、4×2、5=1,让学生说一说0、4和2、5可不可以说互为倒数。

7、随堂练习:判断:(1)得数是1的两个数叫做互为倒数。(2)因为10×1/10=1,所以10是倒数,1/10是倒数。(3)因为1/4+3/4=1,所以1/4是3/4的倒数。

8、出示例题2,找一找哪两个数互为倒数?再说一说你是怎么找的?

9、以小组为单位进行讨论交流。

10、分组汇报:

第一种方法:看两个分数的乘积是不是1。

第二种方法:看两个分数的'分子与分母是否分别颠倒了位置。

哪一种方法比较快?

11、观察书中的找倒数的方法,强调:3/5的倒数是5/3,不能用等号相连。

1、真分数、假分数。

2、整数。

3、小数。

4、带分数(板书)。

12、例2中还有哪些数没有找到倒数?

13、提问:1和0有没有倒数?如果有,是多少?(小组讨论、汇报。)。

我们现在应用今天学习的知识解决一些问题。

板书设计成知识树。

70 2387229
");