实用高二数学教学计划方案(实用【参考4篇】

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“实用高二数学教学计划方案(实用【参考4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

高二数学教学计划方案【第一篇】

1。知识内容

2。 章节安排

本章教学时间约需18课时,具体分配如下:

1 直线与直线的方程 8课时

2 圆与圆的方程 5课时

3 空间直角坐标系 3课时

高二数学教学计划方案【第二篇】

主动而不是被动的进行高中新课程标准改革,认真解读新课程标准的理念;研究高中新课程标准的实验与高考衔接的问题;把学生的接受性、被动学习转变成主动性、研究性学习;使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会进步的需要。具体目标如下。

1.获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

2.提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

3.发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考

和作出判断。

4.提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

5.具有一定的数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

备课组长在教研组长的领导下,负责年级备课和教学研究工作,努力提高本年级学科的教学质量。

1.全组成员精诚团结,互相关心,互相支持,弘扬一种同志加兄弟的`同仁关系,力争使我们高一数学组成为一个充满活力的优秀集体。

2.不拘形式不拘时间地点的加强交流,互相之间取长补短,与时俱进,教学相长。

3.在日常工作当中,既保持和优化个人特色,又实现资源共享,同类班级的相关工作做到基本统一。

4.抓好本年级活动课和研究性学习课的教学,有针对性培养学有余力,学有特长的学生,并做好后进生的转化工作,真正做到大面积提高教育质量。

1.以老师的精心备课与充满激情的教学,换取学生学习高效率。

2.将学校和教研组安排的有关工作落到实处。

3.落实培辅工作,为高三铺路!教育要从娃娃抓起,那么对难于上青天的教学我们应当从今天抓起。

1.按时完成学校(教导处,教研组)相关工作。

2.共同研究,共同探讨,备课组为新教材每章节配套单元测试卷两套。

3.每周集体备课一次,每次有中心发言人,组织进行教学研讨以便分章节搞好集体备课。

4.互相听课,以人之长,补己之短,完善自我。

5.认真组织好培优辅差工作。

6.做好学科段考、模块的复习、出题、考试、评卷、成绩统计和质量分析评价工作。

7.积极组织全组成员探索教材特点、积极思考教法分析、认真分析学情以便根据不同的情况实施有效的教学策略。

1.导数及其应用(约24课时)

(1)导数概念及其几何意义

①通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵(参见选修1-1案例中的例2、例3)。

②通过函数图像直观地理解导数的几何意义。

(2)导数的运算

①能根据导数定义求函数y=c,y=x,y=x2,y=x3,y=1/x,y=x的导数。

②能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f(ax b))的导数。

③会使用导数公式表。

(3)导数在研究函数中的应用

①结合实例,借助几何直观探索并了解函数的单调性与导数的关系(参见选修

案例中的例4);能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间。

②结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。

(4)生活中的优化问题举例。

例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。(参见选修1-1案例中的例5)

(5)定积分与微积分基本定理

①通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念。

②通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。(参见例1)

(6)数学文化

收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。(参见第91页)

2.推理与证明(约8课时)

(1)合情推理与演绎推理

①结合已学过的数学实例和生活中的实例,了解合情推理的含义,能利用归纳和类比等进行简单的推理,体会并认识合情推理在数学发现中

的作用(参见选修2-2中的例2、例3)。

②结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本模式,并能运用它们进行一些简单推理。

③通过具体实例,了解合情推理和演绎推理之间的联系和差异。

(2)直接证明与间接证明

①结合已经学过的数学实例,了解直接证明的两种基本方法:分析法和综合法;了解分析法和综合法的思考过程、特点。

②结合已经学过的数学实例,了解间接证明的一种基本方法--反证法;了解反证法的思考过程、特点。

(3)数学归纳法

了解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题。

(4)数学文化

①通过对实例的介绍(如欧几里德《几何原本》、马克思《资本论》、杰弗逊《独立宣言》、牛顿三定律),体会公理化思想。

②介绍计算机在自动推理领域和数学证明中的作用。

高二数学教学计划方案【第三篇】

(一)《普通高中数学课程标准(实验)》

1、课程的基本理念:

构建共同基础,提供发展平台;提供多样课程,适应个性选择;倡导积极主动、勇于探索的学习方式;注重提高学生的数学思维能力;发展学生的数学应用意识;与时俱进地认识"双基";强调本质,注意适度形式化;体现数学的文化价值;注重信息技术与数学课程的整合;建立合理、科学的评价体系。

2、课程目标:

(1)获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。通过不同形式的自主学习、探究活动,体验数学发现和创造的历程。

(2)提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本能力。

(3)提高数学地提出、分析和解决问题(包括简单的实际问题)的能力,数学表达和交流的能力,发展独立获取数学知识的能力。

(4)发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和做出判断。

(5)提高学习数学的兴趣,树立学好数学的信心,形成锲而不舍的钻研精神和科学态度。

(6)具有一定的`数学视野,逐步认识数学的科学价值、应用价值和文化价值,形成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

(二)20xx年普通高等学校招生全国统一考试数学(文科)(广东卷)考试说明

1、能力要求

能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识。

(1)空间想象能力:

(2)抽象根据能力:

(3)推理论证能力:

(4)运算求解能力:

(5)数据处理能力:

(6)应用意识:

(7)创新意识。

2、个性品质要求

个性品质是指考生个体的情感、态度和价值观,要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

3、难度比例

试题按其难度分为容易题、中等题、难题,试卷包括容易题、中等题和难题,以中等题为主,试卷的难度系数在左右。

(一)隐性目标

1、努力实现《普通高中数学课程标准(实验)》中对课程目标中的六点说明;

2、发展学生的能力:

(1)空间想象能力:

(2)抽象根据能力:

(3)推理论证能力:

(4)运算求解能力:

(5)数据处理能力:

(6)应用意识:

(7)创新意识。

3、培养学生的个性品质:如具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。能克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。

(二)显性目标

力求使每位学生都获得必要的数学基础知识和基本技能,理解基本的数学概念,数学成绩有所提高,对数学更加感兴趣。结合我所教的两个班的实际,我希望高二14班的数学成绩能在期中、期末中的平均分排在全级前4名,高二15班的数学成绩有所进步,能在期中、期末平均分的排名中排在全级前8名。

两个班均属普通班,学生基础不好,接受能力差,甚至出现厌学情绪,特别是15班的好几位学生,基本不学数学。所以上课难度有点大。

为了达到上述教学目的,我将采取以下举措:

(一)向学生介绍学习数学的方法,使同学们养成良好的学习习惯。

1、提高听课的效率是关键。

学生学习期间,在课堂的时间占了一大部分。因此听课的效率如何,决定着学习的基本状况,提高听课效率应注意以下几个方面:

(1)课前预习能提高听课的针对性。预习中发现的难点,就是听课的重点,预习后把自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;预习还可以培养自己的自学能力。

(2)听课过程中的科学。首先应做好课前的物质准备和精神准备;其次就是听课要全神贯注。全神贯注就是全身心地投入课堂学习,耳到、眼到、心到、口到、手到。

(3)特别注意老师讲课的开头和结尾。

(4)积极思考每一道例题,记录下与老师不同的思路,要认真把握好思维逻辑,分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。

(5)此外还要特别注意老师讲课中的提示。

(6)最后一点就是作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。

2、做好复习和总结工作。

(1)做好及时的复习。

(2)做好单元复习。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。(3)做好单元小结。单元小结内容应包括以下部分:本单元(章)的知识网络;本章的基本思想与方法(应以典型例题形式将其表达出来);自我体会:对本章内,自己做错的典型问题应有记载,分析其原因。

(二)改进教学方法及需要注意的问题

1、改进教学方法,教好新教材

(1)转变观念,提高对素质教育的认识。在使用新教科书时一定要改进教学方法,按《新大纲》的要求进行,控制教学要求,控制教学难度,确实从"应试教育"转变到贯彻素质教育的轨道上来。要应试,但必须从提高学生数学能力上下功夫。

(2)要充分利用先进的教学手段,提高教学效益。新的教学手段必然促进教学方法的改革,必然带来新的教学效益。科学计算器已被列入初中的教学内容,高中相应的计算内容已充分使用科学计算器讲授,教师在教学中更应充分利用科学计算器,以提高教学效益,提高学生解决问题的能力。有条件的地方或学校,也要利用电子计算机和多媒体技术作为教学的辅助手段。

(3)研究新教材 把握好教学中的“度”;研究知识结构,控制教学难度①重视知识的发生过程,淡化纯理论和学生难以接受的东西。②理解基础,重视基础③研究课本例题、习题,发挥例题、习题功能。

(4)教学要从学生实际出发,教学要符合教育学心理学发展 认知发展,要经历多种水平,多种阶段。教师的教学要设计有直观性、启发性、使学生可接受性。(5)教师的教学要多应用数学发现和解释实际问题。

(三)多读一些数学教育教学方面的书

1、数学纵横,如:《华罗庚科普著作选集》、《数学的明天》、《生活中的数学》等等。

2、波利亚理论与解题研究,如:《怎样解题》、《数学的发现》、《数学与猜想》。

3、数学教育与数学教学,如:《孙维刚谈全班55%怎样考上北大考上清华》、《中国著名特级教师教学思想录〃中学数学卷》、《杨象富数学教学经验》等等。

4、趣味数学,如:《关于无穷大的文化史, 计算出人意料,站在巨人的肩膀上》、《趣味数学辞典》、《数学游戏新编》等等。

5、知识性读物,如:《从杨辉三角谈起》、《谈谈不定方程》、《抽屉原则及其他》等等。

6、数学竞赛,如:《数学奥林 匹克教程》、《数学竞赛导论》、《历届全国高中数学联赛试题详解》等等。

7、初等数学研究,《初等数学研究文集》、《初等数学研究的问题与课题》、《不等式研究》等等。

高二数学教学计划方案【第四篇】

1、知识与技能

(1)了解算法的含义,体会算法的思想;

(2)能够用自然语言叙述算法;

(3)掌握正确的算法应满足的要求;

(4)会写出解线性方程(组)的算法;

(5)会写出一个求有限整数序列中的最大值的算法。

2、过程与方法

(1)通过求解二元一次方程组,体会解方程的一般性步骤,从而得到一个解二元一次方程组的步骤,这些步骤就是算法,不同的问题有不同的算法;

(2)同一个问题也可能有多个算法,能模仿求解二元一次方程组的步骤,写出一个求有限整数序列中的最大值的算法。

3、情感与价值观

通过本节的学习,对计算机的算法语言有一个基本的了解;明确算法的要求,认识到计算机是人类征服自然的一个有力工具,进一步提高探索、认识世界的能力。

重点:算法的含义,解二元一次方程组、判断一个数为质数和利用“二分法”求方程近似解的算法设计。

难点:把自然语言转化为算法语言。

(一)创设情景、导入课题

问题1:把大象放入冰箱分几步?

第一步:把冰箱门打开;

第二步:把大象放进冰箱;

第三步:把冰箱门关上。

问题2:指出在家中烧开水的过程分几步?(略)

问题3:如何求一元二次方程 的解?

第一步:计算 ;

第二步:如果 ,

如果 ,方程无解

第三步:下结论。输出方程的根或无解的信息。

注意:在以上三个问题的求解过程中,老师要紧扣算法定义,带领学生总结,反复强调,使学生体会以下几点:

①有穷性:步骤是有限的,它应在有限步操作之后停止,而不能是无限地执行下去。

②确定性:每一步应该是确定的并且能有效地执行且得到确定的结果,而不应当是模棱两可的。

③逻辑性:从初始步骤开始,分为若干个明确的步骤,前一步是后一步的前提,只有执行完前一步才能进行下一步,并且每一步都准确无误,才能完成问题。

④不唯一性:求解某一个问题的算法不一定只有唯一的一个,可以有不同的算法。

⑤普遍性:很多具体的问题,都可以设计合理的算法去解决。

注:其他还有输入性、输出性等特征,结论不固定。

提问:算法是如何定义?

(二)师生互动、讲解新课

x-2y=-1 ①

回顾(课本p2内容): 写出解二元一次方程组 2x y=1 ② 的算法。

解:第一步,②×2 ①,得5x=1;③

第二步,解③,得x= ;

第三步,②-①×2得5y=3;④

第四步,解④ ,得y= ;

第五步,得到方程组的解为 x= ;y= 。

思考1:你能写出求解一般的二元一次方程组的步骤吗?

上题的算法是由加减消元法求解的,这个算法也适合一般的二元一次方程组的解法

对于一般的二元一次方程组 可以写出类似的求解步骤:

第一步,①×b2-②×b1,得 ;③

第二步,解③,得 .

第三步,②×a1-①×a2,得 ;④

第四步,解④,得 ;

第五步,得到方程组的解为

(高斯消去法)

思考2:根据上述分析,用加减消元法解二元一次方程组,可以分为五个步骤进行,这五个步骤就构成了解二元一次方程组的一个“算法”。我们再根据这一算法编制计算机程序,就可以让计算机来解二元一次方程组。那么解二元一次方程组的算法包括哪些内容?

思考3:一般地,算法是由按照一定规则解决某一类问题的基本步骤组成的。

你认为:

(1)这些步骤的个数是有限的还是无限的?

(2)每个步骤是否有明确的计算任务?

总结:在数学中,按照一定规则解决某一类问题的明确和有限的步骤称为算法。

算法(algorithm)一词出现于12世纪,源于算术(algorism),即算术方法。指的。是用阿拉伯数字进行算术运算的过程。在数学中,算法通常是指按照一定的规则解决某一类问题的明确的和有限的步骤。现在,算法通常可以编成计算机程序,让计算机执行并解决问题。后来,人们把它推广到一般,把进行某一工作的方法和步骤称为算法。

广义地说,算法就是做某一件事的步骤或程序。菜谱是做菜肴的算法,洗衣机的使用说明书是操作洗衣机的算

法,歌谱是一首歌曲的算法。在数学中,主要研究计算机能实现的算法,即按照某种机械程序步骤一定可以得到结果的解决问题的程序。比如解方程的算法、函数求值的算法、作图的算法,等等。

(三)例题剖析,巩固提高

例1(课本p3例1):如果让计算机判断7是否为质数,如何设计算法步骤?

算法:

第一步,用2除7,得到余数1,所以2不能整除7.

第二步,用3除7,得到余数1,所以3不能整除7.

第三步,用4除7,得到余数3,所以4不能整除7.

第四步,用5除7,得到余数2,所以5不能整除7.

第五步,用6除7,得到余数1,所以6不能整除7.

因此,7是质数。

课堂练习1:

整数89是否为质数?如果让计算机判断89是否为质数,按照上述算法需要设计多少个步骤?

思考4:用2~88逐一去除89求余数,需要87个步骤,这些步骤基本是重复操作,我们可以按下面的思路改进这个算法,减少算法的步骤。

(1)用i表示2~88中的任意一个整数,并从2开始取数;

(2)用i除89,得到余数r. 若r=0,则89不是质数;若r≠0,将i用i 1替代,再执行同样的操作;

(3)这个操作一直进行到i取88为止。

你能按照这个思路,设计一个“判断89是否为质数”的算法步骤吗?

算法设计:

第一步,令i=2;

第二步,用i除89,得到余数r;

第三步,若r=0,则89不是质数,结束算法;若r≠0,将i用i 1替代;

第四步,判断“i>88”是否成立?若是,则89是质

数,结束算法;否则,返回第二步。

探究:一般地,判断一个大于2的整数是否为质数的算法步骤如何设计?

在中央电视台幸运52节目中,有一个猜商品价格的环节,竟猜者如在规定的时间内大体猜出某种商品的价格,就可获得该件商品。现有一商品,价格在0~8000元之间,采取怎样的策略才能在较短的时间内说出比较接近的答案呢?

例2、一群小兔一群鸡,两群合到一群里,要数腿共48,要数脑袋整17,多少只小兔多少只鸡?

算法1:s1 首先计算没有小兔时,小鸡的数为:17只,腿的总数为34条。

s2 再确定每多一只小兔、减少一只小鸡增加的腿数2条。

s3 再根据缺的腿的条数确定小兔的数量: (48-34)/2=7只

s4 最后确定小鸡的数量:17-7=10只。

算法2:s1 首先设 只小鸡, 只小兔。

s2 再列方程组为:

s3 解方程组得:

s4 指出小鸡10只,小兔7只。

算法3:s1 首先设 只小鸡,则有 只小兔

s2 列方程

s3 解方程得 ,则

s4 指出小鸡10只,小兔7只。

算法4:s1 “请一名驯兽师”所有小鸡抬一条腿,所有小兔抬两条腿

s2 有小兔 只

s3 有小鸡 只

s4 指出小鸡10只,小兔7只。

算法5:s1 有小兔 只

s2 有小鸡 只

二分法:

对于区间[a,b ]上连续不断,且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,而得到零点近似值的方法叫做二分法。

例3(课本p4例2):写

出用“二分法”求方程 的近似解的算法。

算法分析:

令f(x)= ,则方程 的解就是函数f(x)的零点。

第一步,令f(x)= ,给定精确度d.

第二步,确定区间[a,b],满足f(a)·f(b)<0.

第三步,取区间中点 .

第四步,若f(a)·f(m)<0,则含零点的区间为[a,m],否则,含零点的区间为[m,b].

将新得到的含零点的区间仍记为[a,b];

第五步,判断[a,b]的长度是否小于d或f(m)是否等于0.若是,则m是方程的近似解;否则,返回第三步。

(四)课堂小结,巩固反思

1、算法的主要特点:

(1)有限性:一个算法在执行有限步后必须结束;

(2)确切性:算法的每一个步骤和次序必须是确定的;

(3)输入:一个算法有0个或多个输入,以刻划运算对象的初始条件。所谓0个输入是指算法本身定出了初始条件。

(4)输出:一个算法有1个或多个输出,以反映对输入数据加工后的结果。没有输出的算法是毫无意义的。

2、计算机解决任何问题都要依赖算法,算法是建立在解法基础上的操作过程,算法不一定要有运算结果。设计一个解决某类问题的算法的核心内容是将解决问题的过程分解为若干个明确的步骤,即算法,它没有一个固定的模式,但有以下几个基本要求:

(1)符合运算规则,计算机能操作;

(2)每个步骤都有一个明确的计算任务;

(3)对重复操作步骤作返回处理;

(4)步骤个数尽可能少;

(5)每个步骤的语言描述要准确、简明。

71 277793
");