2024年2024版人教版八年级上册数学教案【最新4篇】
【前言导读】此篇优秀作文“2024年2024版人教版八年级上册数学教案【最新4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
八年级数学教案人教版【第一篇】
平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。
平行四边形的性质:平行四边形的对边相等;
平行四边形的对角相等。
平行四边形的对角线互相平分。
平行四边形的判定
1.两组对边分别相等的四边形是平行四边形
2.对角线互相平分的四边形是平行四边形;
3.两组对角分别相等的四边形是平行四边形;
4.一组对边平行且相等的四边形是平行四边形。
三角形的中位线平行于三角形的第三边,且等于第三边的一半。
直角三角形斜边上的中线等于斜边的一半。
矩形的定义:有一个角是直角的平行四边形。
矩形的性质:矩形的四个角都是直角;
矩形的对角线平分且相等。
2022版人教版八年级上册数学教案【第二篇】
教学目标
知识与技能
1.初步理解方程的解和解方程的含义。
2.结合图例,理解根据等式的性质解方程的方法并进行检验。
3.掌握解方程的格式和写法。
过程与方法
经历方程的解和解方程的认识过程,提高学生比较、分析的能力。
情感态度与价值观
在学习活动中,激发学生的学习兴趣,体验知识之间的联系和区别,培养检验的学习习惯。
教学重难点
重点:理解方程的解和解方程的含义。
难点:会检验方程的解。
教学工具
多媒体设备
教学过程
教学过程设计
1 复习旧知,迁移导入
(1)在上一节课的学习活动中,我们探究了哪些规律?
学生回顾天平保持平衡的规律及等式保持不变的规律。
(2)学习这些规律有什么用呢?今天我们解方程就需要充分利用等式的基本性质。
板书课题:解方程(1)
2 合作探究,获取新知
教学教材第67页例1。
(1)课件出示例1。
从图中知道哪些信息?学生观察图片,交流图片数学信息。盒子中的皮球与外面的3皮个球加起来共有9个,方程怎么列?得到χ+3=9
学生自己先列出方程,然后指名回答。
板书:χ+3=9
如何解方程?要求盒子中一共有多少个皮球,也就是求等于什么,我们该怎么利用等式保持不变的规律来求出方程的解呢?
(2)出示第67页分析图示,学生观察图示,交流想法。
根据学生的汇报,板书解方程的过程:
(3)为什么方程两边同时减去3,而不是别的数?
引导学生得出结论:因为,两边减去3以后,左边刚好剩下一个χ,这样,右边就刚好是χ的值。因此,解方程说得实际一点就是通过等式的变换,如何使方程的一边只剩下一个χ即可。
追问:χ=6带不带单位呢?让学生明白χ在这里只代表一个数值,因此不带单位。
(4)如何检验χ=6是不是正确的答案?引导学生学习检验方程的解得方法,根据学生回答板书。
板书:
小结:通过刚才解方程的过程,我们知道了在方程的左右两边同时减去一个相同的数,左右两边仍然相等。利用等式的基本性质,可以帮助我们解方程。
注意:在书写的过程中写的都是等式,而不是递等式。
(5)认识、区别方程的解和解方程。
①使方程左右两边相等的未知知数的值,叫做方程的解,刚才,χ=6就是方程χ+3=9的解。而求方程的解的过程叫做解方程,刚才,想出办法求出χ+3=9的过程就是解方程。
板书:使方程左右两边相等的未知知数的值,叫做方程的解
求方程的解的过程叫做解方程。
②方程的解和解方程这两个概念说起来差不多,但它们的意义却大不相同,它们之间的有何不同?
在小组内议一议,明确,方程的解是一个具体的值,而解方程是一个求解的过程。
③刚才我们把χ=6代入方程中,得到方程左边=右边,说明χ=6是方程χ+3=9的解。
教学教材第68页例2。
(1)利用等式不变的规律,我们再来解一个方程。
出示例2:解方程3χ=18
怎样才能求到1个χ是多少呢?
观察示意图,互相讨论,指名回答。
在方程两边同时除以3,得到χ=6。
让学生打开书68页,把例2中的解题过程补充完整。
为什么两边同时除以的是3,而不是其它数呢?
两边同时除以3,刚好把左边变成1个χ。
使学生明确:在方程的两边同时除以一个不为0的数,方程左右两边仍然相等。
(2)组织学生动手检验。
(3)这是我们解方程常用的两种方法,想不想用它们来试一试呢?
教学教材第68页例3。
(1)出示:解方程20-χ=9
(2)指名学生板演,解出方程20-χ=9的解。
(3)交流归纳解方程的方法。
(4)小结:等式两边加上相同的式子,左右两边仍然相等。
3 深化理解,拓展应用
(1)随堂练习
①、完成“做一做”的第1、2题,集体评讲,强调验算。
②、思考:如果方程两边同时加上或乘上一个数,左右两边还相等吗?依据是什么?
等式保持不变的规律。
(2)拓展练习
亮亮今年9岁,爸爸今年37岁。几年后妈妈的年龄是小华的3倍?
4 自主评价,全课总结
你觉得自己今天学会了什么?还有什么不太理解的地方?
讨论:什么时候应该在方程的两边加,什么时候该减,什么时候该乘,什么时候该除呢?
课后习题
练习十五1—5题。
板书
所以,χ=6是方程的解。
使方程左右两边相等的未知数的值,叫方程的解。
求方程的解的过程叫解方程。
八年级数学教案人教版【第三篇】
一、教学目标:熟练地进行分式乘除法的混合运算。
二、重点、难点
1、重点:熟练地进行分式乘除法的混合运算。
2、难点:熟练地进行分式乘除法的混合运算。
3、认知难点与突破方法:
紧紧抓住分式乘除法的混合运算先统一成为乘法运算这一点,然后利用上节课分式乘法运算的基础,达到熟练地进行分式乘除法的混合运算的目的。课堂练习以学生自己讨论为主,教师可组织学生对所做的题目作自我评价,关键是点拨运算符号问题、变号法则。
三、例、习题的意图分析
1、p17页例4是分式乘除法的混合运算。分式乘除法的混合运算先把除法统一成乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的结果要是最简分式或整式。
教材p17例4只把运算统一乘法,而没有把25x2-9分解因式,就得出了最后的结果,教师在见解是不要跳步太快,以免学习有困难的学生理解不了,造成新的疑点。
2,p17页例4中没有涉及到符号问题,可运算符号问题、变号法则是学生学习中重点,也是难点,故补充例题,突破符号问题。
四、课堂引入
计算
(1)(2)
五、例题讲解
(p17)例4.计算
[分析]是分式乘除法的混合运算。分式乘除法的混合运算先统一成为乘法运算,再把分子、分母中能因式分解的多项式分解因式,最后进行约分,注意最后的计算结果要是最简的。
(补充)例。计算
(1)
=(先把除法统一成乘法运算)
=(判断运算的符号)
=(约分到最简分式)
(2)
=(先把除法统一成乘法运算)
=(分子、分母中的多项式分解因式)
=
=
六、随堂练习
计算
(1)(2)
(3)(4)
七、课后练习
计算
(1)(2)
(3)(4)
八、答案:
六。(1)(2)(3)(4)-y
七。(1)(2)(3)(4)
八年级数学教案人教版【第四篇】
1、理解分式的基本性质。
2、会用分式的基本性质将分式变形。
二、重点、难点
1、重点:理解分式的基本性质。
2、难点:灵活应用分式的基本性质将分式变形。
3、认知难点与突破方法
教学难点是灵活应用分式的基本性质将分式变形。突破的方法是通过复习分数的通分、约分总结出分数的基本性质,再用类比的方法得出分式的基本性质。应用分式的基本性质导出通分、约分的概念,使学生在理解的基础上灵活地将分式变形。
三、例、习题的意图分析
的例2是使学生观察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后应用分式的基本性质,相应地把分子(或分母)乘以或除以了这个整式,填到括号里作为答案,使分式的值不变。
的例3、例4地目的是进一步运用分式的基本性质进行约分、通分。值得注意的是:约分是要找准分子和分母的公因式,最后的结果要是最简分式;通分是要正确地确定各个分母的最简公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
教师要讲清方法,还要及时地纠正学生做题时出现的错误,使学生在做提示加深对相应概念及方法的理解。
习题的第5题是:不改变分式的值,使下列分式的分子和分母都不含“-”号。这一类题教材里没有例题,但它也是由分式的基本性质得出分子、分母和分式本身的符号,改变其中任何两个,分式的值不变。
“不改变分式的值,使分式的分子和分母都不含‘-’号”是分式的基本性质的应用之一,所以补充例5.
四、课堂引入
1、请同学们考虑:与相等吗?与相等吗?为什么?
2、说出与之间变形的过程,与之间变形的过程,并说出变形依据?
3、提问分数的基本性质,让学生类比猜想出分式的基本性质。
五、例题讲解
p7例2.填空:
[分析]应用分式的基本性质把已知的分子、分母同乘以或除以同一个整式,使分式的值不变。
p11例3.约分:
[分析]约分是应用分式的基本性质把分式的分子、分母同除以同一个整式,使分式的值不变。所以要找准分子和分母的公因式,约分的结果要是最简分式。
p11例4.通分:
[分析]通分要想确定各分式的公分母,一般的取系数的最小公倍数,以及所有因式的次幂的积,作为最简公分母。
(补充)例5.不改变分式的值,使下列分式的分子和分母都不含“-”号。
,,,,。
[分析]每个分式的分子、分母和分式本身都有自己的符号,其中两个符号同时改变,分式的值不变。
解:=,=,=,=,=。
六、随堂练习
1、填空:
(1)=(2)=
(3)=(4)=
2、约分:
(1)(2)(3)(4)
3、通分:
(1)和(2)和
(3)和(4)和
4、不改变分式的值,使下列分式的分子和分母都不含“-”号。
(1)(2)(3)(4)
七、课后练习
1、判断下列约分是否正确:
(1)=(2)=
(3)=0
2、通分:
(1)和(2)和
3、不改变分式的值,使分子第一项系数为正,分式本身不带“-”号。
(1)(2)
八、答案:
六、1.(1)2x(2)4b(3)bn+n(4)x+y
2、(1)(2)(3)(4)-2(x-y)2
3、通分:
(1)=,=
(2)=,=
(3)==
(4)==
4、(1)(2)(3)(4)
上一篇:鲁滨逊漂流记读后感【5篇】
下一篇:难忘的中秋节作文最新4篇