六年级数学小论文(4篇)
【阅读指引】阿拉题库网友为您分享整理的“六年级数学小论文(4篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
六年级数学小论文【第一篇】
生活中,处处都有数学的身影,超市里,餐厅里,家里,学校里………都离不开数学。我也有几次对数学的亲身经历呢,我挑其中两件事来给大家说一说。
记得三年级,有一次,我和妈妈逛超市,超市此刻正在搞春节打折活动,每件商品的折数各不相同。我一眼就看中了一袋旺旺大礼包,净含量是628克,原价35元,此刻打八折,可是打八折怎样算呢?我问妈妈。妈妈告诉我,打八折就是乘以,也就是35×=28(元)。我恍然大悟。我准备把这袋旺旺大礼包买下来,可是,妈妈告诉我,可能后面的旺旺大礼包更便宜,要去后面看看。走着走着,果然,我又看见了卖旺旺大礼包的,净含量是650克,原价40元,此刻也打八折。这下,我犯了愁,净含量不一样,原价也不一样,哪个划算呢?我又问妈妈。妈妈告诉我35×=28(元),40×=32(元),一袋是628克,现价28元,另一袋是650克,现价32元。用28628≈,32650≈,》,所以第二袋划算一点儿,于是,我们买下了第二袋。经过这次购物,我明白了怎样计算打折数,怎样计算哪种物品更划算一些。
记得四年级,有一次,我和一个朋友出去玩,朋友的妈妈给我们俩出了一道题:1~100报数,每人能够报1个数,2个数,3个数,谁先报到100,谁就获胜。话音刚落,我便思考怎样才能获胜,我想:这肯定是一道数学策略问题,不能盲目地去报,里面肯定有数学问题,用1+3=4,1004=25,我不能当第一个报的,只能当最终一个报的,她报×个数,我就报(4—×)个数,就能够获胜,我抱着疑惑的心理去和她报数,显然,她没有思考获胜的策略,我用我的方法去和她报数,到了最终,我果然报到了100,我获胜了。原先这道数学问题是一道典型的对策问题,需要思考,才能获胜。到了六年级,我也学到了这类知识,只可是,更加难了,经过这次游玩,我喜欢上了对策问题,也更加爱思考,寻找数学中的奥秘。
数学,就像一座高峰,直插云霄,刚刚开始攀登时,感觉很简便,但我们爬得越高,山峰就变得越陡,让人感到恐惧。这时候,仅有真正喜爱数学的人才会有勇气继续攀登下去,所以,站在数学的高峰上的人,都是发自内心喜欢数学的,站在峰脚的人是望不到峰顶的。仅有在生活中发现数学,感受数学,才能让自我的视野更加开阔!
六年级数学小论文【第二篇】
秋天到了,猴爸爸一家三口到山上游玩,走过一个果园,只见树上结满了又大又红的苹果,还有小猴最喜欢吃的桃子,馋得小猴子直流口水,嚷着要妈妈给他摘果子吃。
猴妈妈说:“想吃吗?那好,咱们来做一道数学题,答对了就给你吃。”猴妈妈悄悄对猴爸爸说了几句,只见猴爸爸摘了一大堆苹果和桃放在了一齐堆,并用衣服盖好。
“听好了!”猴妈妈清了清嗓子说,“衣服下头有苹果和桃,桃的个数是苹果的2倍。如果每次取出3个苹果,4个桃,若干次后衣服下头还有1个苹果,18个桃。问一共取了几次?原先有苹果和桃各有几个?答不出来,可不能吃果子哦!”猴妈妈微笑着看着小猴子。
小猴子挠了挠后脑勺,拿了根树枝,在地上演算起来。边画边轻声说道:“桃是苹果的2倍,假设每次取3个苹果、6个桃,那么拿到最终剩1个苹果时,应当剩2个桃。可是此刻剩1个苹果,18个桃,是因为每次只取了4个桃,每次少取了6-4=2个。所以,取了(18-2)÷2=8(次)。苹果:8×3+1=25(个),桃:8×4+18=50(个)。妈妈,你看看我算得对不对!”说完,他得意地看着猴妈妈。猴爸爸走上前去一数,不多不少正是25个苹果、50个桃。
小猴子把果子分给爸爸妈妈和自我,一家三口美滋滋地大吃起来。果园里传出了他们开心的笑声,一向飘到很远很远的地方。
六年级数学小论文【第三篇】
数学的知识海洋是无穷尽的,学习数学的过程也韵味无穷。今日,一道趣味的数学题引起了我的注意,于是,我叫妈妈来一齐思考这道题。
题目如下:某区举行小学生春季运动会,其中某校参加的人数占运动员总人数的十五分之一;若这个学校再去10名运动员,则该校人数占运动员总人数的二十三分之二。问这次运动会共有运动员多少人?这个学校有多少人参加运动会?
妈妈看到这道题后,二话不说,立马用方程来解。设原先共有运动员×人参加,那么现参赛总人数为(×+10),根据“原先参赛总人数×115+10=此刻参赛总人数×223”的关系式得出×=450,那么最终的答案就是:这次运动会共有460人参加,这个学校有40人参加。
我承认,在解方程的熟练程度方面,我还不如妈妈;可是,难道这道题就只能用解方程这一种方法来求解吗?数学教师在课堂上说过:掌握了比例法,能够使问题简单化,甚至能够把六年级的数学题变为二年级的那么简单!这道题目中有变量,也有不变量。哈哈,这时候我的脑海中浮现出“以不变量或者中间量做单位1”而用比例法求解。对于这道题,不变量是其他学校的参赛人数。所以,用1-115=1415算出原先这个学校和其他学校的人数比例是1:14。然而这个学校增加10人后,那总人数也就增加10人,所以用1-223=2123算出此刻这个学校和其他学校的人数比例是2:21。列出算式如下:
(原)某校:其他=1:14=3:42
(现)某校:其他=2:21=4:42
因为其他学校参赛人数不变,这样就能够算出这个学校增加10人是增加了4-3=1份,那么,比的单位就是10÷1=10人。用4×10=40就算出这个学校此刻的参赛人数;(4+42)×10=460算出这次运动会参赛的总人数。
一道题就这样被迎刃而解了。看到我不列方程直接算出答案,妈妈先是有些惊讶,继而拍拍自我脑门,连声说着:“我怎样没想到呢?”之后,当我说出:“数学王教师说了,如果看到应用题只明白列方程的话,是没有前途的”这句话后,妈妈来了句:“太伤自尊了!”就假装不理我了。
经过这道趣味的数学题,告诉我们一个道理:遇到难题不要怕,进取思考各个数之间的关系,进而找到解题的钥匙,这样,任何题都能被解决。
六年级数学小论文【第四篇】
一天,我和妈妈上街去,看见一个小摊前围满了小孩。好奇的我赶紧走过去,原先摊主设了个可得奖品的游戏。一尺见方的硬纸板上用黑笔画了个“”并按顺时针方向依次标上……12。等奇数格上放了手表等较贵重的物品。等偶数格上是些不值钱的小贴纸,纸盒正中有枚小指针。参加游戏的小朋友轻轻拨动小指针,它就会转起来,当它停下来时,看停在几号格,然后你再按指针所指的数字往后走相应的格数,这时走到的格子里的物品就归你了。每玩一次只要付一元钱给摊主即可。
奇怪,怎样玩的人都只得到小贴纸呢妈妈让我好好想想这中间有什么奥妙。
我想,小指针可能停在等奇数上,也有可能停在等偶数上。但问题的关键是还要往后走与它相同的格数。奇数+奇数=偶数,偶数+偶数=偶数。也就是说,一个数加上它本身,结果肯定是偶数。所以不管指针停在奇数还是偶数上,最终得到的偶数的可能是百分之百,而得到奇数的可能性是0。
举个例子来说,假如指针停在奇数“5”号格。这时还应当往后走5格,……10,好,停在“10”号格上了,假如指针停在偶数“6”号格,再往后走6格,……12,就停在“12”号格上了。
所以,不管指针停在哪里,往后再走同样的格数后,所得到的都是偶数,所以小朋友都只得到最便宜的小贴纸,而得到贵重物品的可能性是0。这个摊主肯定能赚钱。
其实,生活中的一些小把戏只是运用了某些知识,只要你肯动脑,勤思考,多分析,就能发现其中的奥妙,你就不会轻易上当了,因为天下没有免费的午餐。