实用高一数学教学计划 高一数学教学计划指导思想(最新4篇)

网友 分享 时间:

【前言导读】此篇优秀作文“实用高一数学教学计划 高一数学教学计划指导思想(最新4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

高一数学教学计划 高一数学教学计划指导思想【第一篇】

(1)理解子集、真子集、补集、两个集合相等概念;

(2)了解全集、空集的意义,

(3)掌握有关的符号及表示方法,会用它们正确表示一些简单的集合,培养学生的符号表示的能力;

(4)会求已知集合的子集、真子集,会求全集中子集在全集中的补集;

(5)能判断两集合间的包含、相等关系,并会用符号及图形(文氏图)准确地表示出来,培养学生的数学结合的数学思想;

(6)培养学生用集合的观点分析问题、解决问题的能力。

教学重点:子集、补集的概念

教学难点 :弄清元素与子集、属于与包含之间的区别

教学用具:幻灯机

教学过程 设计

上节课我们学习了集合、元素、集合中元素的三性、元素与集合的关系等知识。

提出问题(投影打出)

已知 , , ,问:

1.哪些集合表示方法是列举法。

2.哪些集合表示方法是描述法。

3.将集m、集从集p用图示法表示。

4.分别说出各集合中的元素。

5.将每个集合中的元素与该集合的关系用符号表示出来。将集n中元素3与集m的关系用符号表示出来。

6.集m中元素与集n有何关系。集m中元素与集p有何关系。

找学生回答

1.集合m和集合n;(口答)

2.集合p;(口答)

3.(笔练结合板演)

4.集m中元素有-1,1;集n中元素有-1,1,3;集p中元素有-1,1.(口答)

5. , , , , , , , (笔练结合板演)

6.集m中任何元素都是集n的元素。集m中任何元素都是集p的元素。(口答)

引入在上面见到的集m与集n;集m与集p通过元素建立了某种关系,而具有这种关系的两个集合在今后学习中会经常出现,本节将研究有关两个集合间关系的问题。

1.子集

(1)子集定义:一般地,对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,我们就说集合a包含于集合b,或集合b包含集合a。

记作: 读作:a包含于b或b包含a

当集合a不包含于集合b,或集合b不包含集合a时,则记作:a b或b a.

性质:① (任何一个集合是它本身的子集)

② (空集是任何集合的子集)

置疑能否把子集说成是由原来集合中的部分元素组成的集合?

解疑不能把a是b的子集解释成a是由b中部分元素所组成的集合。

因为b的子集也包括它本身,而这个子集是由b的全体元素组成的。空集也是b的子集,而这个集合中并不含有b中的元素。由此也可看到,把a是b的子集解释成a是由b的部分元素组成的集合是不确切的。

(2)集合相等:一般地,对于两个集合a与b,如果集合a的任何一个元素都是集合b的元素,同时集合b的任何一个元素都是集合a的元素,我们就说集合a等于集合b,记作a=b。

例: ,可见,集合 ,是指a、b的所有元素完全相同。

(3)真子集:对于两个集合a与b,如果 ,并且 ,我们就说集合a是集合b的真子集,记作: (或 ),读作a真包含于b或b真包含a。

思考能否这样定义真子集:“如果a是b的子集,并且b中至少有一个元素不属于a,那么集合a叫做集合b的真子集。”

集合b同它的真子集a之间的关系,可用文氏图表示,其中两个圆的内部分别表示集合a,b.

提问

(1) 写出数集n,z,q,r的包含关系,并用文氏图表示。

(2) 判断下列写法是否正确

① a ② a ③ ④a a

性质:

(1)空集是任何非空集合的真子集。若 a ,且a≠ ,则 a;

(2)如果 , ,则 .

例1 写出集合 的所有子集,并指出其中哪些是它的真子集。

解:集合 的所有的子集是 , , , ,其中 , , 是 的真子集。

注意(1)子集与真子集符号的方向。

(2)易混符号

①“ ”与“ ”:元素与集合之间是属于关系;集合与集合之间是包含关系。如 r,{1} {1,2,3}

②{0}与 :{0}是含有一个元素0的集合, 是不含任何元素的集合。

如: {0}。不能写成 ={0}, ∈{0}

例2 见教材p8(解略)

例3 判断下列说法是否正确,如果不正确,请加以改正。

(1) 表示空集;

(2)空集是任何集合的真子集;

(3) 不是 ;

(4) 的所有子集是 ;

(5)如果 且 ,那么b必是a的真子集;

(6) 与 不能同时成立。

解:(1) 不表示空集,它表示以空集为元素的集合,所以(1)不正确;

(2)不正确。空集是任何非空集合的真子集;

(3)不正确。 与 表示同一集合;

(4)不正确。 的所有子集是 ;

(5)正确

(6)不正确。当 时, 与 能同时成立。

例4 用适当的符号( , )填空:

(1) ; ; ;

(2) ; ;

(3) ;

(4)设 , , ,则a b c.

解:(1)0 0 ;

(2) = , ;

(3) , ∴ ;

(4)a,b,c均表示所有奇数组成的集合,∴a=b=c.

练习教材p9

用适当的符号( , )填空:

(1) ; (5) ;

(2) ; (6) ;

(3) ; (7) ;

(4) ; (8) .

解:(1) ;(2) ;(3) ;(4) ;(5)=;(6) ;(7) ;(8) .

提问:见教材p9例子

1.补集:一般地,设s是一个集合,a是s的一个子集(即 ),由s中所有不属于a的元素组成的集合,叫做s中子集a的补集(或余集),记作 ,即

.

a在s中的补集 可用右图中阴影部分表示。

性质: s( sa)=a

如:(1)若s={1,2,3,4,5,6},a={1,3,5},则 sa={2,4,6};

(2)若a={0},则 na=n*;

(3) rq是无理数集。

2.全集:

如果集合s中含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集,全集通常用表示。

注: 是对于给定的全集 而言的,当全集不同时,补集也会不同。

例如:若 ,当 时, ;当 时,则 .

例5 设全集 , , ,判断 与 之间的关系。

高一数学教学计划 高一数学教学计划指导思想【第二篇】

1通过对幂函数概念的学习以及对幂函数图象和性质的归纳与概括,让学生体验数学概念的形成过程,培养学生的抽象概括能力。

2使学生理解并掌握幂函数的图象与性质,并能初步运用所学知识解决有关问题,培养学生的灵活思维能力。

3培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。

幂函数的性质及运用

幂函数图象和性质的发现过程

问题探究法 教具:多媒体

问题1:如果张红购买了每千克1元的水果w千克,那么她需要付的钱数p(元)和购买的水果量w(千克)之间有何关系?

(总结:根据函数的定义可知,这里p是w的函数)

问题2:如果正方形的边长为a,那么正方形的面积 ,这里s是a的函数。 问题3:如果正方体的边长为a,那么正方体的体积 ,这里v是a的函数。 问题4:如果正方形场地面积为s,那么正方形的边长 ,这里a是s的函数 问题5:如果某人 s内骑车行进了 km,那么他骑车的速度 ,这里v是t的函数。

以上是我们生活中经常遇到的几个数学模型,你能发现以上几个函数解析式有什么共同点吗?(右边指数式,且底数都是变量) 这只是我们生活中常用到的一类函数的几个具体代表,如果让你给他们起一个名字的话,你将会给他们起个什么名字呢?(变量在底数位置,解析式右边都是幂的形式)(适当引导:从自变量所处的位置这个角度)(引入新课,书写课题)

由学生讨论,(教师可提示p=w可看成p=w1)总结,即可得出:p=w, s=a2, a=s , v=t-1都是自变量的若干次幂的形式。

教师指出:我们把这样的都是自变量的若干次幂的形式的函数称为幂函数。

幂函数的定义:一般地,我们把形如 的函数称为幂函数(power function),其中 是自变量, 是常数。 1幂函数与指数函数有什么区别?(组织学生回顾指数函数的概念) 结论:幂函数和指数函数都是我们高中数学中研究的两类重要的基本初等函数,从它们的解析式看有如下区别: 对幂函数来说,底数是自变量,指数是常数 对指数函数来说,指数是自变量,底数是常数 例1判别下列函数中有几个幂函数?

① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由学生独立思考、回答)

2幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容?

(学生讨论,教师引导。学生回答。)

3幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域?

(学生小组讨论,得到结论。引导学生举例研究。结论:幂指数 不同,定义域并不完全相同,应区别对待。)教师指出:幂函数y=xn中,当n=0时,其表达式y=x0=1;定义域为(-∞,0)u(0,+∞),特别强调,当x为任何非零实数时,函数的值均为1,图象是从点(0,1)出发,平行于x轴的两条射线,但点(0,1)要除外。)

例2写出下列函数的定义域,并指出它们的奇偶性:①y=x ②y= ③y=x ④y=x

(学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。)

4上述函数①y=x ②y= ③y=x ④y=x 的单调性如何?如何判断?

(学生思考,引导作图可得。并加上y=x 和y=x-1图象)接下来, 在同一坐标系中学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示。见后附图1

让学生观察图象,看单调性、以及还有哪些共同点?(学生思考,回答。教师注意学生叙述的严密性。)

教师总评:幂函数的性质

(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1),

(2)如果a>0,则幂函数的图象通过原点,并在区间[0,+∞)上是增函数,

(3)如果a<0,则幂函数在(0,+∞)上是减函数,在第一区间内,当x从右边趋向于原点时,图象在y轴右方无限地趋近y轴;当x趋向于+∞,图象在x轴上方无限地趋近x轴。

5通过观察例1,在幂函数y=xa中,当a是(1)正偶数、(2)正奇数时,这一类函数有哪种性质?

学生思考,教师讲评:(1)在幂函数y=xa中,当a是正偶数时,函数都是偶函数,在第一象限内是增函数。(2)在幂函数y=xa中,当a是正奇数时,函数都是奇函数,在第一象限内是增函数。

例3巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x ②y=x ③y=x 。

例4简单应用1:比较下列各组中两个值的大小,并说明理由:

① , ;

②(-) ,(-) ;

③ , ;

④ ,

例5简单应用2:幂函数y=(m -3m-3)x 在区间 上是减函数,求m的值。

例6简单应用2:

已知(a+1)<(3-2a) ,试求a的取值范围。

今天的学习内容和方法有哪些?你有哪些收获和经验?

1、 幂函数的概念及其指数函数表达式的区别 2、 常见幂函数的图象和幂函数的性质。

布置作业:

课本 2、3、4、思考5

高一数学教学计划 高一数学教学计划指导思想【第三篇】

使学生在九年义务教育数学课程的基础上,进一步提高作为未来公民所必要的数学素养,以满足个人发展与社会提高的需要。具体目标如下。

1、获得必要的数学基础知识和基本技能,理解基本的数学概念、数学结论的本质,了解概念、结论等产生的背景、应用,体会其中所蕴涵的数学思想和方法,以及它们在后续学习中的作用。经过不一样形式的自主学习、探究活动,体验数学发现和创造的历程。

2、提高空间想像、抽象概括、推理论证、运算求解、数据处理等基本本事。

3、提高数学地提出、分析和解决问题(包括简单的实际问题)的本事,数学表达和交流的本事,发展独立获取数学知识的本事。

4、发展数学应用意识和创新意识,力求对现实世界中蕴涵的一些数学模式进行思考和作出确定。

5、提高学习数学的兴趣,树立学好数学的信心,构成锲而不舍的钻研精神和科学态度。

6、具有必须的数学视野,逐步认识数学的科学价值、应用价值和文化价值,构成批判性的思维习惯,崇尚数学的理性精神,体会数学的美学意义,从而进一步树立辩证唯物主义和历史唯物主义世界观。

我们所使用的教材是人教版《普通高中课程标准实验教科书·数学(a版)》,它在坚持我国数学教育优良传统的前提下,认真处理继承,借签,发展,创新之间的关系,体现基础性,时代性,典型性和可理解性等到,具有如下特点:

1、“亲和力”:以生动活泼的呈现方式,激发兴趣和美感,引发学习活力。

2、“问题性”:以恰时恰点的问题引导数学活动,培养问题意识,孕育创新精神。

3、“科学性”与“思想性”:经过不一样数学资料的联系与启发,强调类比,推广,特殊化,化归等思想方法的运用,学习数学地思考问题的方式,提高数学思维本事,培育理性精神。

4、“时代性”与“应用性”:以具有时代性和现实感的素材创设情境,加强数学活动,发展应用意识。

1、选取与资料密切相关的,典型的,丰富的和学生熟悉的素材,用生动活泼的语言,创设能够体现数学的概念和结论,数学的思想和方法,以及数学应用的学习情境,使学生产生对数学的亲切感,引发学生“看个究竟”的冲动,以到达培养其兴趣的目的。

2、经过“观察”,“思考”,“探究”等栏目,引发学生的思考和探索活动,切实改善学生的学习方式。

3、在教学中强调类比,推广,特殊化,化归等数学思想方法,尽可能养成其逻辑思维的习惯。

两个班均属普高班,学习情景良好,但学生自觉性差,自我控制本事弱,所以在教学中需时时提醒学生,培养其自觉性。班级存在的最大问题是计算本事太差,学生不喜欢去算题,嫌麻烦,只注重思路,所以在以后的教学中,重点在于培养学生的计算本事,同时要进一步提高其思维本事。

同时,由于初中课改的原因,高中教材与初中教材衔接力度不够,需在新授时适机补充一些资料。所以时间上可能仍然吃紧。同时,其底子薄弱,所以在教学时只能注重基础再基础,争取每一堂课落实一个知识点,掌握一个知识点。

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和提高。

2、注意从实例出发,从感性提高到理性;注意运用比较的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维本事就解决实际问题的本事,以及培养提高学生的自学本事,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的本事。

5、自始至终贯彻教学四环节,针对不一样的教材资料选择不一样教法。

6、重视数学应用意识及应用本事的培养。

高一数学教学计划 高一数学教学计划指导思想【第四篇】

使学生学好从事社会主义现代化建设和进一步学习现代科学技术所必需的数学基础知识和基本技能,培养学生的运算能力、逻辑思维能力和空间想象能力,以逐步形成运用数学知识来分析和解决实际问题的能力。要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性,培养学生的科学态度和辨证唯物主义的观点。

1、4班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。

5班共xx人,男生xx人,女生xx人;本班相对而言,数学尖子约xx人,中上等生约xx人,中等生约xx人,中下生约xx人,差生约xx人。

2、4班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。

5班在初中升入高中的升学考试中,数学成绩在100及以上的有xx人,80—99有xx人,60—79有xx人,40—59有xx人,40以下有xx人,其中最高分为xx,最低分为xx。

3、4/5班分别为高一年级9个班中编排一个普高班和一个普高班之后的体育班,整体分析的结果是:

1、教材内容:集合、一元二次不等式、简易逻辑、映射与函数、指数函数和对数函数、数列、等差数列、等比数列。

2、集合概念及其基本理论,是近代数学最基本的内容之一;函数是中学数学中最重要的基本概念之一;数列有着广泛的应用,是进一步学习高等数学的基础。

3、教材重点:几种函数的图像与性质、不等式的解法、数列的概念、等差数列与等比数列的通项公式、前n项和的公式。

4、教材难点:关于集合的各个基本概念的涵义及其相互之间的区别和联系、映射的概念以及用映射来刻画函数概念、反函数、一些代数命题的证明、

5、教材关键:理解概念,熟练、牢固掌握函数的图像与性质。

6、采用了由浅入深、减缓坡度、分散难点,逐步展开教材内容的做法,符合从有限到无限的认识规律,体现了从量变到质变和对立统一的辩证规律。每阶段的内容相对独立,方法比较单一,有助于掌握每一阶段内容。

7、各部分知识之间的联系较强,每一阶段的知识都是以前一阶段为基础,同时为下阶段的学习作准备。

8、全期教材重要的内容是:集合运算、不等式解法、函数的奇偶性与单调性、等差与等比数列的通项和前n项和。

1、理解集合、子集、交集、并集、补集的概念。了解空集和全集的意义,了解属于、包含、相等关系的意义,能掌握有关的术语和符号,能正确地表示一些简单的集合。

2、掌握一元二次不等式的解法和绝对值不等式的解法,并能熟练求解。

3、了解命题的概念、逻辑联结词的含义,掌握四种命题及其关系,掌握充分、必要、充要条件,初步掌握反证法。

4、了解映射的概念,在此基础上理解函数及其有关的概念,掌握互为反函数的函数图象间的关系。

5、理解函数的单调性和奇偶性的概念,并能判断一些简单函数的单调性和奇偶性,能利用函数的奇偶性与图象的对称性的关系描绘图象。

6、掌握指数函数、对数函数的概念及其图象和性质,并会解简单的函数应用问题。

7、使学生理解数列的有关概念,掌握等差数列与等比数列的概念、通项公式、前n项和的公式,并能够运用这些知识解决一些问题。

1、激发学生的学习兴趣。由数学活动、故事、吸引人的课、合理的要求、师生谈话等途径树立学生的学习信心,提高学习兴趣,在主观作用下上升和进步。

2、注意从实例出发,从感性提高到理性;注意运用对比的方法,反复比较相近的概念;注意结合直观图形,说明抽象的知识;注意从已有的知识出发,启发学生思考。

3、加强培养学生的逻辑思维能力就解决实际问题的能力,以及培养提高学生的自学能力,养成善于分析问题的习惯,进行辨证唯物主义教育。

4、抓住公式的推导和内在联系;加强复习检查工作;抓住典型例题的分析,讲清解题的关键和基本方法,注重提高学生分析问题的能力。

5、自始至终贯彻教学四环节,针对不同的教材内容选择不同教法。

71 183049
");