人教版小学数学五下《分数的意义》教案实用4篇

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“人教版小学数学五下《分数的意义》教案实用4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

分数的意义教案1

l教学目标:

1、在操作、探究活动中,逐步理解一个整体,建立单位“1”的概念,理解分数的意义。

2、在学习过程中,培养学生的思维能力和应用意识。

3、体会数学与生活的密切联系,进一步增强学好数学的信心。

l教学重点:

理解单位“1”和分数的意义。

l教学难点:

理解单位“1”和分数的意义。

l教学准备:

教具准备:自制教学课件

学具准备:小棒、练习纸

l设计意图:

《小学数学新课程标准》指出:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。在课前通过与学生的谈话引出分数后,短短的一句“关于分数,你已经知道了什么”唤起学生已有的知识经验,找到了新知与旧知的链接点,接着又借助媒体教学手段向学生介绍分数的由来,适时渗透了数学文化思想。使学生的思维开始了“起跑”。

作为学生学习的组织者、引导者与合作者,我力求引在核心处,拨在关键处,让学生自主探究、补充概括,借助于课堂这个思维“运动场”,不着痕迹地引导学生理解分数的真正含义。从引导学生“起跑”到“加速”,最后“冲刺”,水道渠成,促使每个学生获得成功的体验。

l教学过程:

一、谈话导入

1、通过师生之间的谈话引出分数。

2、关于分数,你已经知道了什么?

3、提出要求:

师:从刚才的表现可以看出**班的同学们都很棒。呆会儿合作时,先听清楚老师的要求再动口说一说、动手做一做,可以吗?

二、分数的产生

1、板书课题

师:课前我们一起聊到了分数,今天这节课我们继续来认识分数。

师:你知道古人是怎样表示分数的吗?让我们一起来看一看。

三、理解分数的意义

1.理解一个整体

(1)、找出各种材料的1/4。

师:今天老师带来了一些材料,你能分别找到它们的四分之一吗?

师:那就请同学们开动脑筋,分一分、涂一涂,找出它们的1/4。

然后同桌之间说一说,你是如何找到它们的1/4的。听明白了吗?

(2)、汇报交流

教师进行规范:

生:我把正方形平均分成4份,这样的一份就是这个正方形的1/4。

生:我是把这条线段平均分成4份,这样的一份就是这条线段的1/4。

突出整体:

师:这里的1/4是如何得到的呢?

生:我把4个苹果平均分成4份,这样的一份就是这个整体的1/4。

师:这是他的想法,还有不同想法吗?

生:把4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

师:说得不错。只要把这4个苹果看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

进行知识迁移:

生:我是把8个三角形看作一个整体,平均分成4份,这样的一份就是这个整体的1/4。

(3)小结:

提问:刚才我们在不同的材料里找到了四分之一,找的过程中有什么相同的或不同的地方。

不同点:材料不同。

跟进:但我们都把这些材料看成了一个整体,这个整体可以是一个物体也可以是多个物体。

相同点:都是把这个整体平均分成4份,表示了这样的一份,得到了这个整体的四分之一。

2、理解单位“1”。

(1)深化理解一个整体

学生自主创作:

师:现在,老师为同学们准备了一些小棒。同桌合作,任选一些小棒,分一分、找一找他们的1/4。开始吧。

交流汇报:

师:你用几根小棒表示1/4?你把几根小棒看作一个整体?你能说说这个1/4的含义吗?(多说几个)

师:一根可以用四分之一表示、两根也可以用四分之一表示、三根、四根都可以用四分之一表示。也就是说把什么平均分成4份,每份就可以用1/4进行表示呢?——一个整体

学生说4根小棒、8根小棒,师:4根小棒、8根小棒都可以看作一个整体

(2)揭示单位“1”。

师:说的真好。在数学中,通常把一个整体叫做单位“1”。把单位“1”平均分成4份,这样的一份可以用1/4来表示。(板书单位1)

师:刚才我们通过动手画一画、分一分等方法,深入理解了四分之一的含义。下面我们一起做一个猜数游戏,准备好了吗?

师:如果一个菠萝用三分之一表示,他是把什么看作单位1呢?——果然如此。

师:如果2个橘子用五分之一来表示,她的单位1,又是多少呢?你是怎样想的?

师:同学们真是了不起!已经能很快地找到单位1了。

3.理解分子、分母的含义

(1)、找其他分数

师:刚才我们把4个苹果、8个三角形分别看作单位1,平均分成4份,找到了1/4。现在请你继续观察,还能发现其他的分数吗?

那就请同学们动手涂一涂,用阴影表示出这个分数,并把这个分数写在下方,再和你的同桌说一说这个分数的含义。

(2)、汇报交流

师:谁愿意和大家交流一下你所找到的分数?

生:把4个苹果看作单位1,平均分成4份,这样的2份就是2/4。

(3)比较:

师:在刚才同学们动手涂一涂,写一写的时候,老师发现,有些同学找到了,这几个分数。(课件使用说明:点击课件出现:

师:观察这些分数,你发现了什么?

生:分母都是4

师:为什么分母都是4呢?

生:因为都是平均分成了4份

师:把什么平均分成4份?——单位“1”。

师:要是单位“1”平均分成5份,分母是几呢?——5。平均分成6份——分母就是——6。

师:分母其实就是表示——平均分的份数

师:同学们的观察力可不一般呐。还有什么发现吗?

生:分子各不相同,都差1

师:分母为什么会不一样呢?

生:取的份数不同

师:平均分成4份,取这样的一份就是1,两份就是——2,三份就是——3

师:分子其实就是表示——取的份数

师:同学们不仅观察能力强,分析、概括能力也很出色。

4.揭示分数的意义。

(1)逐步理解分数的意义

师:我们通过动手分一分,涂一涂等方法已经认识了很多的分数。

现在老师再写一个分数5/9,你能说说它的含义吗?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:已经会用单位1来说了,真好。谁也愿意来试一试呢?

生:把单位“1”平均分成9份,这样的的5份,就是单位1的5/9。

师:说的真好。如果不是平均分成9份,板书5/,那么它的含义是什么呢?

生:把单位“1”平均分成很多份,取这样的5份,就是5/。

师:很多份可以是几份?——2份,3份……

师:我们可以用一个词来表示(板书:若干份)

师:如果取的份数也不是5份了,板书/,那么这个分数的含义是什么呢??

生:把单位“1”平均分成若干份,取这样的若干份,就是/

师:可以取这样的一份,也可以取这样的……几份。

小结:像同学们所理解的,把单位“1”平均分成若干份,这样的一份或几份都可以用分数来表示。(板书)这就是我们今天所学的分数的意义。我们一起来读一读。

(2)理解分数单位

师:分数和整数一样,也有计数单位。像这样表示其中一份的数我们叫做分数单位。

1/4,2/4,3/4,4/4的分数单位就是——1/4

师:5/9的分数单位?

生:1/9

师:5/99

生:1/99

师:/1000

生:1/1000

师:老师都还没说分子呢,你怎么就知道分数单位了?

生:分数单位就是表示一份的数

师:也就是说一个分数的分母是几,这个分数的分数单位就是——几分之一

师:那3/4里有几个这样的分数单位呢?5/9里有几个这样的分数单位呢?

5.总结:今天这节课,我们一起合作学习了什么?你有什么收获?

四、练习巩固。

师:看来同学们的收获还真不少。请同学们在括号里填上适当的分数。

1.填一填

(1)说说3/5的意义

(2)同意吗?

(3)3/8的分数单位是多少?有几个这样的分数单位。

2、点击生活

哪位同学愿意来读一读,并说说其中分数的意义。

(1)、我校五年级学生约占全校学生的1/6

(2)、长江约3/5的水体受到不同程度的污染

师:还有几分之几的水体没受污染呢?

师:受污染水体多还是没受污染的水体多?——怎么想的?

师:有什么想说的?——要保护环境

师:看来同学们很有环保意识。那你希望,长江受污染的水体占长江水体的几分之几呢?

师:大家都有美好的希望,那就让我们拿出实际行动,共同来保护环境。

(3)、姚明的头部高度约占他身高的1/8

师:我们的身体中还蕴藏着很多分数,有兴趣的同学课后可以去查一查资料。

五、总结全课、质疑问难

师:这节课我们学习了什么?你有什么收获?还有什么问题?

分数的意义教案2

重点:

(1)理解分数乘以整数的意义

(2)理解并掌握分数乘以整数的计算法则

难点:

在计算的过程中,能约分的要先约分,然后再乘。

设计思想:

发挥学生的主体作用,在独立尝试的基础上,进行同学间的广泛交流,在对比、择优、质疑的基础上,归纳分数乘以整数的意义和法则。

教学过程:

一、设疑激趣:

1.下面各题怎样列式?你是怎样想的?

5个12是多少?10个23是多少?25个70是多少?

(概括:整数乘法表示求几个相同加数的和的简便运算)

2.计算下面各题,说说怎样算?

++=++=

说一说,这两道题目有什么区别和联系?第二小题还有什么更简便的方法吗?请你自己试一试。

同学之间交流想法:++==33=

3=这个算式表示什么?为什么可以这样计算?

教师板书++=3=

3.出示:(课件1)

这道题目又该怎样计算呢?

二、自主探索:

1.出示例1,读题,说说块是什么意思?

2.根据已有的`知识经验,自己列式计算。

三、学生交流、质疑:

1.学生汇报,并说一说你是怎样想的?

方法a.++===(块)

方法=++====(块)

2.比较这两种方法,有什么联系和区别?

(联系:两种方法的结果是一样的。区别:一种方法是加法,另一种方法是乘法。)

教师根据学生的回答,板书++=3

3.为什么可以用乘法计算?

(加法表示3个相加,因为加数相同,写成乘法更简便。)

表示什么?怎样计算?

(表示3个的和是多少?++====,用分子2乘3的积做分子,分母不变。)

5.提示:为计算方便,能约分的要先约分,然后再乘。

(这些质疑活动应该由学生进行,教师引导学生围绕本节课的重点进行质疑、答疑)

四、归纳、概括:

1.结合=3=和++=3=,说一说一个分数乘以整数表示什么?(求几个相同加数的和的简便运算。)

2.分数乘以整数怎样计算?(用分子和分母相乘的积做分子,分母不变)

(根据学生的回答,教师进行板书)

五、巩固、发展

1.巩固意义:

(1)看图写算式,说出乘法算式的意义。(出示图片1、图片2、图片3)

(2)改写算式:

+++=()()

+++++++=()()

(3)只列式不计算:3个是多少?5个是多少?

2.巩固法则:

(1)计算(说一说怎样算)

462148

(说一说,为什么先约分再相乘比较简便?以8为例来说明)

(2)应用题:

a.一个正方体的礼品盒,底面积是平方米,要想将这个礼品盒包装起来,至少需要多少包装纸?

b.美术馆要进行美术展览,有5张画是边长米的正方形的,如果为这几幅画配上镜框,需要木条多少米?

(3)对比练习:

a.一条路,每天修千米,4天修多少千米?

b.一条路,每天修全路的,4天修全路的几分之几?

3.发展提高:

(1)出示(课件1):说说怎样想?

(2)出示(课件2):说说怎样想?

分数的意义教案3

教学内容:

教材第27页的例1和第28页的练一练,完成练习五第1~3题。

教学目标:

1、使学生学会联系不同的知识,作出不同的推理,体会策略和方法的多样性。

2、在运用不同的策略解决问题的过程中,感受知识间的内在联系,形成最优化思想。

3、在解决问题的过程中,增强解决问题的策略意识,获得解决问题的成功经验,提高学好数学的信心。

教学重点:

掌握用转化的策略解决分数问题的方法。

教学难点:

根据具体问题,确定转化后要实现的目标和转化的方法。

教学资源:

课件

教学过程:

一、回顾旧知,整理策略

谈话:从三年级上册起,每一册数学都教学一种策略,你们知道我们学了哪些策略?(学生可能已经忘记,教师帮助回顾整理:依次是分析量关系的从条件向问题推理和从问题向条件推理,帮助理解题意的列表整理和画图整理,还有枚举转化假设与替换等策略)

提问:这些策略你们都学会了吗?今天我们将合理的选择这些策略来解决新的问题,大家愿意接受挑战吗?(板书课题:转化的策略)

二、合作探究,运用策略

1、教学例1(课件出示例1)

学生读题,自主完成。

谈话:这是一个稍复杂的分数问题,除了用刚才我们做的方法来解决,你们能否用以前学的策略来思考呢?(引导学生进一步分析)

小组交流方法。

汇报交流情况:(学生遇到困难可作适当的引导。)

①根据男生人数是女生的2/3理解2/3这个分数的意义,可以画线段图,看出男生人数是美术组总人数的2/5。原来的问题就转化成美术组一共有35人,男生人数是总人数的2/5,女生人数是总人数的3/5,男生有多少人?女生有多少人?这是简单的求一个数的几分之几是多少的问题。

②根据分数2/3的意义,可以推理出男生人数和女生人数的比是2∶3。原来问题就转化成美术组一共有3/5人,男生与女生人数的比是2∶3,男生、女生各有多少人?这是按比例分配问题。

③根据分数2/3的意义,想到女生人数看作3份,男生人数是2份,于是产生解题思路:先算出1份是几人,再算2份、3份各是多少人。

④把作为单位1的女生人数设为x,那么男生人数就是2/3x,利用美术组一共35人,能够列方程解题。

谈话:通过刚才的汇报和交流看出大家都有各自的想法,那你们最喜欢哪一种方法呢?为什么呢?(让多名学生回答,征求各自的看法。)

刚才我们运用了不同的策略来解决这个问题,你们能检验一下自己做的是否正确吗?(引导学生交流检验方法)

2、做第28页的练一练

引导学生运用刚才学过的策略,用自己喜欢的方法来解决。

要求学生说说你选择了什么策略,是怎样想的(通过他们在交流中获得这些体验,让学生体会方法的多样性。)

三、巩固练习,回顾策

1、练习五第1题。

要求学生根据示意图里的数量关系,写出分数,并转化成比。或者写出比,再转化成分数。(这道题可以看作沟通数学概念之间联系,组建概念系统的练习,有助于问题的转化。)

2、练习五第2题。

根据已知的比或百分数,把线段图补充完整,要求借助线段图,把稍复杂的问题转化成简单的问题,探索原来问题的解法。(在线段图上可以联想到的数学信息越多,思维就越开放,问题转化的思路会越开阔,解决问题的资源也就越充分。)

四、课堂小结,提升策略

谈话:通过今天的学习,我们知道了在小学阶段学习了很多解决问题的策略,如果能合理选择,就能起到化繁为简的作用,帮助我们更好的解决问题。

五、课堂作业

练习五第3题。

人教版小学数学五下《分数的意义》教案4

一、教材分析

(一)教学资料

人教版的九年义务教育六年制小学数学教材第十册书P60--62《分数的意义》。

(二)教学资料的地位及作用

《分数的意义》是本单元教学资料的主干,也是本单元教学的重点,"分数"的知识对于学生来说并不是一张白纸。是他们在四年级学习中已借助操作、直观初步认识了分数。明白了分数的各部分名称、读写法、以及明白把一个物体、一个计量单位平均分成若干份,取这样的一份或几份,能够用分数来表示的基础上进行学习的。这节课的学习是系统学习分数的开始,也是把分数的概念由感性上升到理性的开始。尽管教材在知识呈现上显得比较简单,可是使学生学起来有必须的难度,因为知识点较多,一共有五个。分别是分数的意义、分数各部分的名称和含义、以及分数单位和单位"1"的'含义等。而理解分数的意义是这节课的教学重点,也是学生的学习重点。这节课教学难点是单位"1"的理解。学好这节课是后面学习真分数和假分数、分数基本性质以及分数应用题的重要前提,对以后学习有关分数知识有着举足轻重的作用。

(三)教学目标

1.经历观察、操作等学习活动,建立单位"1"的概念,理解分数的意义,明白分数单位、分数各部分的名称及含义。

2.在分析、比较、辨析活动中,拓展思维、发展抽象概括能力。

3.感受分数在生活中的应用,激发学习数学的兴趣。

二、设计理念

数学课程标准指出,数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上。由于学生对分数意义的学习虽然不是从零开始,可是小学五年级的学生的思维特点在很大程度上还需要直观形象思维的支撑,对概念的理解还需要经历从直观到抽象、朦胧到明晰的过程,所以这一过程就需要教师给学生供给丰富的素材,充分感知,构成表象,把理性知识物化在演示、操作过程中,使具体形象向抽象转化,建立分数的概念。基于以上教学理念,这节课我主要采用直观的教学方法,引导学生动手操作,在操作中感知,在发现中交流,在交流中体验,在体验中得到发展。

三、设计思路

本节课的教学主要体现以下三个特点:

1.关注学生的已有知识经验。

2.充分尊重学生的认知发展规律。(感知—表象—抽象)

3.让学生在练习巩固、内化的同时,激发学生学习数学的兴趣。

四、教学过程:

具体安排有四个环节:

(一)揭示课题,忆旧引新。

师:关于分数,你们已明白了哪些知识?"在唤醒学生已有知识的同时,学生可能会谈到分数的读写法、分数的产生、分数的各部分名称、简单分数的含义等(如1214),这时教师作适当的小结。

(二)供给材料,学习新知。

1.动手操作,初步感知。(利用实物感知)

根据学生在前面提到的一个分数作例子(如:14)让生小组合作,动手操作。

师:你能否用学具袋中的学具(学具袋中有三角形、长方形、圆形、多根小棒、多个正方体)来表示14

(1)小组合作分一分或摆一摆

(2)大组汇报(边说边展示作品)

(3)引导学生观察分析以上的表示过程,有什么相同点和不一样点?

(4)归纳说明单位"1"的含义。

(5)列举单位"1".

2.利用图像,加深感知。(利用图像感知)

(1)出示图例(略)用分数表示阴影部分:(其中两个不能用分数表示)。

(2)说一说它们的分子、分母各表示什么意思?

(3)引导学生认真观察图围绕以下几点说一说有什么体会

A、一个物体、一些物体能够用"1"表示;

B、"平均分",没有平均分就没有分数;

C、其中的一分或几分的数都能够用分数表示。

3.创造分数,加深理解。

用画图的方法把12个小正方体分一分,画一画,表示出一个分数,并把这个分数表示的意义说给同桌听。分数有:1等

4.深化整体,总结意义。

(1)师:我们已学了那么多的分数,那什么叫分数?

(2)然后引导学生进行分析、比较,抽象概括出分数的意义。

(3)最终之后问:这些分数的分数单位会是多少呢?(自学书本书p62)

(三)巩固练习,强化意义。

数学练习是巩固知识,培养基本技能不可缺少的组成部分。这节课练习的安排主要体现本节课的基本资料、重难点。

1.从第一个纸盒里拿出1根小棒,就拿出了这盒的15,第一个纸盒里有几根小棒?

2.从第一个纸盒里拿出2根小棒,就拿出了这盒的15,第一个纸盒里有几根小棒?

3.从第一个纸盒里拿出3根小棒,就拿出了这盒的15,第一个纸盒里有几根小棒?

(四)课堂总结。

课堂总结也是课堂教学的重要组成部分,它起着画龙点睛的作用。这节课我采用说一句话的形式来总结课堂。如:这节课我们学习了分数,你能用一个分数说一句话吗?把数学与学生的生活实际联系起来,能够使学生感到生活中处处有数学。学起来自然、真实、亲切,从而激发学习兴趣提高解决问题的能力,到达学以致用的目的。

16 922840
");