五年级数学《长方体和正方体的体积》教案(精选5篇)

网友 分享 时间:

【阅读指引】阿拉文库网友为您分享整理的“五年级数学《长方体和正方体的体积》教案(精选5篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

五年级数学《长方体和正方体的体积》教案【第一篇】

学习内容:

长方体、正方体的体积计算(课本第29~31页的内容,课本第30页的例1及第32页练习七的第5~6题)。

学习目标:

1.通过讲授,引导学生找出规律,总结出体积的公式。

2.指导学生运用公式正确计算长方体、正方体的体积。

3.培养学生积极思考、探索新知的思维品质。

教学重点:

长方体、正方体体积计算。

教学难点:

长方体、正方体体积计算

教具运用:

正方体木块若干。

教学过程:

一、复习导入

1.什么叫体积?计量物体的体积常用的单位有哪些?

2.怎样计算一个物体的体积呢?

二、新课讲授

1.长方体体积的计算。

教师课件出示一块长方体积木,一块盖房用的大型砖板。

(1)提问:它们的体积是多少?你是怎样想的?

引导学生回答:长方体积木的体积可以用1立方厘米的正方体去摆,有几个1立方厘米的正方体,它的体积就是多少立方厘米,但是相对于大型砖板再用1cm3或1dm3去量就比较麻烦。

教师:请同学们想一想,如果要知道较大物体的体积,我们能不能用学过的数学知识来计算。

(2)观察操作,探究长方体的'体积公式。

小组合作,用准备好的24块1cm3的小正方体木块,任意摆出不同的长方体,然后把数据填入下表。

学生拼摆,然后填表,集体汇报,老师把有代数性的数字写在表中。

说明学生拼摆长方体的样式非常多,这里只列举几个。观察:从这张表中,你发现了什么?

学生独立思考,然后小组内讨论交流,得出结论。

小结:长方体的体积等于长方体所含体积单位的数量,所含体积单位的数量正好等于长方体长、宽、高的乘积。

板书:长方体的体积=长×宽×高

讲述:如果用字母V表示长方体的体积公式可以写成:V=abh

(3)质疑:求长方体的体积公式需要知道什么条件?

2.探究正方体的体积公式。

(1)启发。根据正方体与长方体的关系,联系长方体积公式,想一想正方体的体积应该怎样计算。

(2)引导学生明确。正方体的体积=棱长×棱长×棱长(板书)用字母表示:V=aaa=a3(a表示棱长)(a3读作a的立方,表示3个a相乘)

3.运用长方体的体积公式解决问题。

(1)出示教材第30页的例1。

(2)学生看图,理解题意。

(3)说出题中所给信息,和所求问题。

(4)指名说出长方体的体积公式。

(5)指名学生上台板演过程,其他同学判断。

(6)老师订正书写。V=abh=7×4×3=84(cm3)

(7)看图,学生独立在练习本上完成。

(8)指名板演,集体订正。

三、课堂作业

完成课本第31页“做一做”第1、2题。

四、课堂小结

1.这节课,你有什么收获?

2.在计算长方体和正方体的体积时,要注意哪些问题?

五、课后作业

完成练习册中本课时练习。

五年级数学《长方体和正方体的体积》教案【第二篇】

教学目标:

1.使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;

2.培养学生实际操作能力,同时发展他们的空间观念;

3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。

教学重点:

探索长方体体积的计算方法。

教学难点:

理解长方体和正方体体积公式的推导过程。

教具准备:

课件,若干个1立方厘米小正方块

学具准备:

1立方厘米的正方体16块

教学过程:

一、激情导入

1、复习引入

师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。

2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。请同学们齐读本节课的学习目标。

3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。

二、民主导学

师:可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。大家请看大屏幕,这个长方体的体积是多少?

(学情欲设)

生1、可以分割成以立方厘米的小块,看看一共有多少块,就有多少立方厘米。

生2、可以量一量。

生3、这些方法都有局限性,我们可以像以前推导平行四边形的面积一样想办法找出长方体体积的计算公式。

老师认为这个提议不错,你们认为呢?

师:谁来猜一猜长方体的体积怎样计算?这个猜想对吗?我们来一起验证。好,请同学们看今天的第一个学习任务。

任务呈现:

用一些体积是1立方厘米的小正方体摆成不同长方体,并完成下表:

出示表格。学生四人一小组,每组一张表格。

(厘米)

(厘米)

(厘米)

小正方体的数量

长方体的体积

师:请同学们以小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。并在小组中讨论你发现了什么。

自主学习

学生活动,师巡视。

展示交流

师:同学们摆出了许多不同的长方体,并且填好了表格。哪一组来汇报?

学生黑板前展示表格,并做详细汇报。

引导学生观察表格,

师:观察表格中的数据,从中你能发现什么呢?

师:通过观察比较,同学们有了很大的发现:长方体的体积等于它的长、宽、高的乘积。(板书:)长方体的体积=长×宽×高。

任务2、继续验证

课件出示:用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。请一个同学上台操作。

1、长4厘米,宽1厘米,高1厘米。

2、长4厘米、宽3厘米、高1厘米。

3、长4厘米、宽3厘米、高2厘米

师:这是三个不同的长方体,根据刚才的发现你能说出它们的体积吗?生回答:4×1×1=4立方厘米4×3×1=12立方厘米4×3×2=24立方厘米

师:那究竟对不对呢?让我们再来摆一摆。

学生小组讨论,动手操作,指名一生上台操作。师巡视。

师:和我们之前的猜想一样吗?

师:根据刚才的验证,得出之前这个结论是正确的。长方体的体积=长×宽×高,如果用V表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,你能字母表示长方体的体积吗?

V=abh

师:那如果再给你一个长7厘米、宽4厘米、高3厘米的长方体,一共要用多少个1立方厘米的小正方体?它的`体积是多少呢?出示例1

课件出示:

师:7×4×3=84立方厘米,所以它的体积就是84立方厘米。

师:长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。

学生汇报:

因为正方体是特殊的长方体。在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。

课件出示正方体,出示公式。

师:正方体的体积公式也可以用字母来表示。但用字母表示正方体的体积公式时,还有一些特殊的地方,书上对此作了详细的说明。请大家打开课本看一看。学生阅读课本。课件出示

正方体的体积:V=a

师:写的时候,3要写在a的右上角,并且要写的小一些。

小训练:完成例2,在练习本上完成,集体订正。

三、巩固应用

1、口答题

2、判断题

3、解答题

四、拓展延伸

师:长方体和正方体的体积在生活中运用的很多,让我们一起来看一看

师:这个算式表示什么意思呢?

出示:

品名:正方体收纳凳

尺寸:30×30×30

材质:涤纶+PP不织布+纤维板

颜色:黑白

师:你能看懂这个说明书吗?

师:如果要往这里放一个长40cm宽20cm高10cm的玩具箱,能放入到收纳凳里吗?

师:看来不能光比较体积的大小,还要联系实际情况,看看长宽高是否都符合要求。

五、课堂小结

师:这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?

长方体的体积教学设计【第三篇】

教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积演示动画“长方体体积1”

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.演示动画 “长方体体积2”

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.演示课件“正方体体积”

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=a·a·a或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

三、巩固反馈.

1.口答填表.

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

2.判断正误并说明理由.

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

四、课堂总结.

今天这节课我们学习了新知识?谁来说一说?

五、课后作业.

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重千克,这块石料重多少千克?

六、板书设计教学目标

1.理解并掌握长方体和正方体体积的计算方法.

2.能运用长、正方体的体积计算解决一些简单的实际问题.

3.培养学生归纳推理,抽象概括的能力.

教学重点

长方体和正方体体积的计算方法.

教学难点

长方体和正方体体积公式的推导.

教学用具

教具:1立方厘米的立方体24块,1立方分米的立方体1块.

学具:1立方厘米的立方体20块.

教学过程

一、复习准备.

1.提问:什么是体积?

2.请每位同学拿出4个1立方厘米的立方体,把它们拼在一起,摆成一排.

教师提问:拼成了一个什么形体?(长方体)

这个长方体的体积是多少?(4立方厘米)

你是怎样知道的?(因为这个长方体由4个1厘米3的正方体拼成)

如果再拼上一个1立方厘米的正方体呢?(5立方厘米)

谈话引入:要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们

学习怎样计算长方体和正方体的体积.

板书课题:长方体和正方体的体积

二、学习新课.

(一)长方体的体积演示动画“长方体体积1”

1.拼摆长方体:请同学们四人为一组,用12个小正方体来拼摆长方体,并分别记下摆

出的长方体的长、宽、高.

2.学生汇报,教师板书:

教师提问:这些长方体有什么共同点?(体积相等)

不同点?(数据不同)

为什么形状不同而体积相等呢?(因为它们都含有同样多的体积单位——

12个1立方厘米)

教师引导:请观察自己摆出的长方体长、宽、高的数,除了表示出长方体的长、宽、高的长度外,还表示什么?

师生共同归纳:表示长的数,如4,除了表示4厘米长外,还表示出一排摆了4个1

立方厘米的正方体.同样的道理,表示宽的数还表示摆了几排,表示高的数还表示有几层.

3.演示动画 “长方体体积2”

第一组:请同学们摆出一个长4厘米,宽3厘米,高2厘米的长方体,说出它的体积.

一排摆出4个1立方厘米的正方体→一共摆了三排→摆两层

第二组:同上要求摆出长3厘米,宽3厘米,高2厘米的长方体.

一排摆出3个1立方厘米的正方体→一共摆了3排→摆2层

第三组:想象一个长5厘米,宽4厘米,高3厘米的长方体,说出体积.

一排摆出5个1立方厘米的正方体→一共摆了4排→摆2层

思考:请观察这些从实际操作中得出的数据,结合拼摆成的图形,看一看这些数据与长

方体的体积有没有关系?是什么关系?

(长方体的体积正好等于它的长、宽、高的乘积)

教师板书:长方体的体积=长×宽×高

教师:用V表示体积,a表示长,b表示宽,h表示高,公式可以写成:

板书: V=abh.

出示投影图:

4.自学例1.

一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

7×4×3=84(立方厘米)

答:它的体积是84立方厘米.

(二)正方体体积.

1.演示课件“正方体体积”

教师提问:此时的长,宽,高各是多少?

变成了什么图形?

这个正方体的体积可以求出来吗?

2.练习 棱长为2分米,它的体积是多少平方分米?2×2×2=8(立方分米)

棱长为4厘米,它的体积是多少平方厘米?4×4×4=64(立方厘米)

3.归纳正方体体积公式.

教师板书:正方体体积=棱长×棱长×棱长.

用V表体积,a表示棱长

V=a·a·a或者V=

4.独立解答例2.

光明纸盒厂生产一种正方体纸板箱,棱长是5分米,体积是多少立方分米?

(分米3)

答:体积是125立方分米.

(三)讨论长方体和正方体的体积计算方法是否相同.

学生归纳:因为正方体是特殊的长方体.在正方体中长,宽,高都相等,所以公式中

b,h都变为a.变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高.

三、巩固反馈.

1.口答填表.

长/分米

宽/分米

高/分米

体积(立方分米)

5

1

2

4

3

5

10

2

4

棱长/米

体积(立方米)

6

30

2.判断正误并说明理由.

① ( )

② ( )

③一个正方体棱长4分米,它的体积是: (立方分米)( )

④一个长方体,长5分米,宽4分米,高3厘米,它的体积是60分米.( )

四、课堂总结.

今天这节课我们学习了新知识?谁来说一说?

五、课后作业.

1.一块砖的长是24厘米,宽是12厘米,厚是6厘米.它的体积是多少平方厘米?

2.一块正方体的石料,棱长是7分米,这块石料的体积是多少立方分米?如果1立方分米石料重千克,这块石料重多少千克?

六、板书设计

长方体的体积教学设计【第四篇】

教学内容:

北师大出版社小学数学教科书数学五年级下册第46—47页。

一、教学内容简析:

这一内容是在学生理解了体积的概念和体积单位的基础上进行教学的。由计算平面图形的面积扩展到研究立体图形的体积计算,是学生空间思维发展的一次飞跃。长方体、正方体的体积计算,是学生形成体积的概念、掌握体积的计量单位和以后计算各种形体体积的基础。

二、教学环境:

通过“猜想——动手操作验证——探究”的教学过程,学生们兴趣盎然的参与到教学活动的每一个环节当中。借助多媒体的教学手段。演示实验的过程,帮助学生建立空间观念,形成清晰的表现。

三、教学目标:

知识技能目标:

1、结合具体情境和实践活动,探索并掌握长方体、正方体体积的计算方法,能正确计算长方体、正方体的体积。解决一些简单的实际问题。

2、在观察、操作、探索的过程中,提高动手操作能力,进一步发展空间观念。

过程与方法策略目标:通过“猜想——验证”的过程,形成发现、创新的过程。从而获取数学活动经验。

能力目标:培养学生动手操作、抽象概括、归纳推理的能力。

情感目标:激发学生学习数学、发现数学的兴趣,学会与人合作。

教学重点:使学生理解长方体的体积公式的的推导过程,掌握长方体体积的计算方法。

教学难点:理解长方体的体积公式的推导过程。

四、教学设计意图:

在本课的教学中,让学生从生活实际需要中体会长方体的体积在生活中的应用,从而产生研究长方体体积的计算的需求,通过观察生活中的实物,发现长方体的体积与长宽高有关系,提出猜想,确定研究的方向。在学生以小组为单位,动手操作探究,来验证猜想的正确。使学生经历知识的建构的过程。通过解决生活中的实际问题,运用长方体体积计算的方法。体会数学运用于生活实际。

五、教学媒体的选择和应用:

这节课的学习重点是:使学生理解并掌握长方体的体积公式,能正确计算。这节课的学习难点是:动手实验、发现长方体的体积公式。

六、教学实施具体过程:

(一)激发兴趣,唤起生活经验和旧知

课件出示:

1、字典是我们学习的工具书,必须要常备身边的,淘气遇到了这样的问题,他每天都要带一本字典,现在有两本内容同样的字典,他要选择其中的哪一本经常带在书包里比较方便呢?为什么?(小本的字典。体积小)

2、在我们生活中经常会遇到比较物体体积大小的情况,请你观察下面的这几组物体,你能发现物体体积的大小可能与物体的什么有关系?(与物体的长、宽、高都有关系。)今天我们就来研究长方体的体积、[意图:导入新课用学生熟悉的工具书,引入新课,体会物体的体积有大有小,课件出示体积大小不同的字典,直观形象的看出体积有大有小。]

(二)唤起旧知

提出猜想

1、看一看下面的长方体的体积是多少?为什么?

体积是4立方厘米。为什么?因为他它含有4个1立方厘米的体积单位。

(1)我们已经知道,长方体的体积就是指长方体所含有的体积单位数。所以求长方体的体积就是求长方体所含有多少个这样的体积单位。下面我们运用1立方厘米的体积单位来研究长方体的体积计算方法。

(2)再加上这样的两排,这个长方体的体积是多少?你是怎么想的?

学生1:12立方厘米。追问怎么得到的?

学生2:一排是4立方厘米,3排就是4×3=12立方厘米。

(3)再加上这样的一层,这个长方体的体积是多少?你是怎么计算的?

一层是12立方厘米,2层就是12×2=24立方厘米这个长方体的长宽高分别是多少?学生1:24立方厘米。

学生2:长是4厘米,宽是3厘米,高是2厘米。

板书:体积

24

3、启发:生活中计量物体的体积,都用“切成若干个体积单位”来计算,行的通吗?观察板书上的几个数字之间有什么关系?大胆猜测体积与什么有关?有什么关系?

猜想:

学生1:用计算公式。

学生2:与长宽高有关。因为表面积就与长宽高有关?

学生3:长方体的体积=长×宽×高?

(三)动手实践

验证猜想

1、这个猜想正确吗?下面就请同学们通过实验去验证我们的猜想是否正确。

(1)请同学们小组合作,用这些1立方厘米的小正方体木块拼成形状不同的长方体,每拼成一种就记录下它的长宽高和体积各是多少,然后计算出来验证刚才的猜想是否正确。

全班同学以小组为单位,进行分工,开始操作、计算、记录、思考、讨论。

引导学生全员参与公式的推导。明确小组学习的任务哪个小组愿意先汇报你们的研究过程和成果?(在实物投影上边摆边说)

第一组:把12个正方体木块摆成3排,每排2个,摆2层。这个长方体的长是2厘米,宽是3厘米,高是2厘米,体积是12立方厘米,我们认为猜想的公式是正确的。

第二组:把18个正方体木块摆成1排,每排6个,摆3层。这个长方体的长是6厘米,宽是1厘米,高是3厘米,体积是18立方厘米,我们认为猜想的公式是正确的。

第三组:把12个正方体木块摆成2排,每排6个,摆1层。这个长方体的长是6厘米,宽是2厘米,高是1厘米,体积是12立方厘米,我们认为猜想的公式是正确的。刚才老师把同学们的实验数据汇总了这张表,我们一起来观察。

[意图:让学生以小组为单位自己动手分组操作拼长方体、填写报告单,为学生创新能力培养创造了条件。同时让学生自主地去感知、观察发现长方体的长、宽、高与小正方体个数之间的关系,降低体积公式推导的难度。从而提出创造性问题,逐步形成创造意识。]

2、发现总结长方体体积公式

(1)师问:每排的个数、每层的排数、层数与长宽高有什么关系?

生一:每排的个数相当于长,每层的排数相当于宽,层数相当于高。

生二:因为每排的个数、每层的排数、层数相乘就是体积,所以长方体的体积=长×宽×高。

师:体积怎么求?为什么?

学生们学会了总结长方体体积的计算方法。

(2)师:同学们真了不起,通过猜想、实验、验证总结出了长方体的体积计算公式,今后在学习上同样可以利用这种方法学习。

[意图:分小组学习,是学生主动理解学习过程、解决问题的重要途径。通过学生交流、师生交流,比较、分析实验过程,从而引导学生主动探索出长方体体积与长、宽、高的关系。

学生们通过自己探索,学会了一定的学习方法。]课件演示公式的推导过程。

(3)字母表示:长方体体积用V表示长用a表示,宽用b表示,高用h表示,长方体的体积公式用字母表示是V=a×b×h;=;abh。

3、长方体的体积计算公式的应用

(1)师问:在生活中,怎样计算长方体的体积?例:一个长方体,长7厘米,宽4厘米,高3厘米,它的体积是多少?

学生1:长方体的体积=长×宽×高。全班动笔做一做。

(2)看立体图计算长方体的体积(只列式不计算)写在课堂作业本上。

长6分米,宽4分米,高3分米,求体积。长6厘米,宽6厘米,高5厘米,求体积。

(3)迁移推导,再次尝试

长6厘米,宽6米,高6米,求体积。

是什么立体图形?正方体。

教师指着长、宽、高都是6厘米的长方体提问:这个图形有什么特征?你怎样想正方体体积的计算方法?与同学交流你的想法?学生讨论后得出:正方体的体积=棱长×棱长×棱长,用字母表示V=a×a×a;=;a3

说明理由:正方体是特殊的长方体。

[意图:尝试练习是运用长方体体积公式解决新问题的渠道。同时通过学生说思考过程,不但突出了掌握长方体、正方体体积的计算方法这一重点,而且培养了学生动手、动口及创新发展的能力。]

(4)继续观察

阴影部分的面积是上面各个图形底面的面积,称为底面积。

长、正方体的体积=底面积×高V=S×h

(四)学以致用

巩固提高

1、判断(判断对错,说明理由)

(1)一个正方体的棱长是2米,它的体积是8立方米。()

(2)一个长方体的长30厘米,宽2分米,高5厘米,它的体积是30×2×5=500(立方厘米)。()

(3)一个棱长为6分米的正方体,它的表面积和体积相等。()

2、提高题

(1)一块砖的长是24厘米,宽是长的一半,厚是6厘米,它的体积是多少立方厘米?(只列式)

(2)一个正方体的棱长总和是36厘米,它的体积是多少?

3、实际应用

(1)雄伟的人民英雄纪念碑矗立在天安门广场上,石碑的高是米,宽米,厚1米。这块巨大的花岗岩石碑的体积是多少立方米?

解:V=abh=×1×

=(m3)

答:这块巨大的花岗岩石碑的体积是立方米。

(2)有一种正方体形状的魔方,棱长是6厘米,体积是多少立方厘米?

V=a3=6×6×6

=216(cm3)

答:这种魔方的体积是216立方厘米。

4、发展题

一块不规则的石头,要求学生借助于两种工具:一个装有水的长方体容器,一把直尺,把这块不规则的石头的体积求出来,只要求说出自己的方法。

[意图:巩固练习的练习题设计,力求突出重点,解决难点,利用多样的题型,把基础认知与创新能力发展紧密结合起来,以达到发展学生思维、形成技能的目的。]

(五)谈谈你今天的收获

板书设计:

长方体的体积=长×宽×高

V=a×b×h

=abh

正方体的体积=棱长×棱长×棱长

V=a×a×a

=a3

长、正方体的体积=底面积×高

V=S×h教后记:

本课注重让学生从体验中学习,在体验中自我建构新知,在体验中掌握数学方法。努力为学生创设条件,让学生主动参与到发现数学知识的过程中。在整个活动中,教师很自然地向学生们渗透了科学研究的基本过程,引导学生们要通过猜想——操作——论证去发现一些客观规律。让学生在发现—验证—解释中体会数学,探究知识。学生们在教师的引导下通过猜测、动手操作、交流讨论发现了长方体的长、宽、高和体积之间的关系,总结出了计算长方体体积的公式。在这一过程中,学生不仅掌握了计算长方体体积的数学公式,还知道了应该如何独立思考,学会了与他人合作。在论证的过程中,同学们动手操作,分别派出各组的代表讲解各自验证的全过程,最终使全班同学达成共识,推导出了长方体的体积公式。通过多媒体的应用,使学生建立清晰的表象,增强了学生的空间想象能力。在从事数学活动的过程中获得了较为广泛的数学活动经验。在探索的过程中培养了学生的合作意识和创新精神。我想,把“如果”变为现实,转换一种角度更多地把学生的思维尽情地施放出来,可能得到的是一片蔚蓝的天空。

长方体的体积教学设计【第五篇】

教学基本

内容六年制小学数学第十一册P25—26。

教学目的和要求

1、使学生经历操作、观察、猜想、验证、交流和归纳等数学活动的过程,探索并掌握长方体和正方体的体积公式,能应用公式正确计算长方体和正方体的体积,并能解决相关的简单实际问题。

2、使学生在活动中进一步积累探索数学问题的经验,增强空间观念,发展数学思考。

3、培养学生初步的归纳推理、抽象概括的能力。

教学重点

及难点探索并掌握长方体和正方体体积的计算方法。

长方体和正方体体积公式的推导。

教学方法

及手段本课设计了一系列的问题,让学生自主探究,从中探索并掌握长方体和正方体的体积计算公式,促进学生的思维,提高学生积累探索数学问题的经验,进一步增强学生的空间观念。

学法指导

讨论交流,并认真听讲思考。

集体备课个性化修改

预习阅读书本25、26页,并初步理解解

教学环节设计

一、以旧引新

师:上节课我们认识了长方体和正方体的特征,谁能对着模型再来介绍一下?

要计量一个物体的体积,就要看这个物体含有多少个体积单位.今天我们来学习怎样计算长方体和正方体的体积.(板书课题)

二、探究新知

1、通过操作、观察、猜想来认识长方体的体积与长、宽、高的关系。

师:用1立方厘米的小正方体摆成长方体,要求四人小组内每人摆出的长方体各不相同。

师:将摆出的长方体放在桌上,并编号。

请同学们说一说这些长方体的长、宽、高各是多少,你是怎样看出来的,将这些长方体的长、宽、高依次记录在表格中。

引导学生依次去数每个长方体中包含的小长方体的个数,并记录在表格中。

问?观察表格中的这些长方体的长、宽、高以及它们的体积,再联系刚才数出它们体积的过程,你发现了什么?

师:通过刚才的操作和讨论,我们想一想,长方体的体积是不是它的长、宽、高的乘积呢?

依次出示例10中的三个长方体,问:如果用1立方厘米的小正方体摆出这三个长方体,各需要多少个小正方体?

师:摆出的每个长方体的长、宽、高分别是多少?体积是多少立方厘米?这个结果与你操作前的想法一样吗?

2、验证、交流后归纳出长方体的体积计算公式及字母公式。

通过刚才操作过程中的发现,同学们能说一说长方体的体积与它的长、宽、高有什么关系吗?怎样求长方体的体积?

通过交流得出公式:长方体的体积=长×宽×高。

问:如果用V表示长方体的体积用a、b、h分别表示长方体长、宽、高(出示如教材所示的长方体的直观图),你能用字母表示长方体的体积公式吗?

交流得出:V=abh.

3、根据正方体与长方体之间的联系,得出正方体的体积计算公式。

师:正方体的棱长有什么特点?你能直接写出正方体的体积公式吗?

交流得出:正方体的体积=棱长×棱长×棱长。

重点理解的含义,进一步明确的读法、写法。

做“试一试”。

作业做“练一练”。

做练习六第2题

课堂作业:做练习六第1、2题

板书设计

执行情况与课后小结

16 13892
");