小学五年级上册数学教案汇总4篇

网友 分享 时间:

【阅读指引】阿拉文库网友为您分享整理的“小学五年级上册数学教案汇总4篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

小学五年级上册数学教案【第一篇】

教材类型:

苏教版所属学科:数学

教学目标:

1.使学生在现实情境中初步认识负数,了解负数的作用,感受运用负数的需要和方便。

2.使学生知道正数和负数的读法和写法,知道0既不是正数,又不是负数。正数都大于0,负数都小于0。

3.使学生体验数学和生活的密切联系,激发学生学习数学的兴趣,培养学生应用数学的能力。

4.增长学生的自然知识,产生热爱自然,享受自然的情感。

教学重点:

初步认识正数和负数以及读法和写法。

教学难点:

理解0既不是正数,也不是负数。

教学具准备:

温度计、练习纸、卡片等。

教学过程:

(一)游戏导入,感受生活中的相反现象。(放在课前)

1.游戏:我们来玩个游戏轻松一下,游戏叫做《我反我反我反反反》。游戏规则:老师说一句话,请你说出与它相反意思的话。

①向上看(向下看)②向前走200米(向后走200米)③电梯上升15层(下降15层)。

下面我们来难度大些的,看谁反应最快。

①我在银行存入了500元(取出了500元)。

②知识竞赛中,五(1)班得了20分(扣了20分)。

③10月份,学校小卖部赚了500元。(亏了500元)。

④零上10摄式度(零下10摄式度)。

2.谈话:李老师的一位朋友喜欢旅游, 11月下旬,他又打算去几个旅游城市走一走。我呢,特意帮他留意了一下这几个地方在未来某天的最低气温,以便做好出门前衣物的准备。下面就请大家一起和我走进天气预报。(天气预报片头)

(二)教学例1

1.认识温度计,理解用正负数来表示零上和零下的温度。

⑴(课件出示地图:点击南京出示温度计和南京的图片)首先来看一下南京的气温。这里有个温度计。

那我们先来认识温度计,请大家仔细观察:这样的一小格表示多少摄式度呢?5小格呢?10小格呢?

问:好,现在你能看出南京是多少摄式度吗?

学生交流:是0℃。

师:你是怎么知道的?(那里有个0,表示0摄式度)。

没错。(结合图说)这是零刻度线,表示0℃。(教师板书0)。

谁来温度计上表示出0℃。

⑵我们再来看上海的气温。(课件:点击上海出现温度计和上海的图片)

上海的最低气温是多少摄式度呢?(学生回答4摄式度后,教师板书4)在温度计上拨一拨。问:拨的时候是怎样想的呢?(在零刻度线以上四格)

指出:上海的气温比0℃要高,是零上4摄式度。(教师结合图,突出上海的气温在零刻度线以上)。

⑶接着让我们一起来了解首都北京的最低气温。(课件点击北京的图片和温度计)

北京又是多少摄式度呢?

与南京的0℃比起来,又怎样了呢?(比南京的0℃要低)

你能用一个手势来表示它和0℃的关系吗?(对,北京的气温比0度低,是零下4摄式度)

你能在温度计上拨出来吗?

⑷现在我们已经知道了这三个地方的最低气温。仔细观察上海和北京的最低气温,它们一样吗?(不一样,一个在0℃以上,一个在0℃以下)。

对,上海的气温比0℃高,是零上4摄式度,我们可以记作+4℃,读作正四摄式度,写的时候先写一个正号(指出是正号不是加号,意义和读法都不同了)再写一个4(板书),大家跟我一起来比划一下。+4也可以直接写成4,把正号省略了。所以同学们所说的4℃也就是+4℃。(板书)

北京的气温比0℃低,是零下4摄式度。我们可以用-4℃来表示零下4摄式度(板书-4)。跟老师一起来读一下。写的时候可以先写一个负号(指出是负号不是减号)再写一个4就可以了,同桌互相比划一下。

⑸小结:通过刚才对三个城市的温度的了解,我们知道,记录温度时,以0℃为界线,用象+4或4这些数可以来表示零上温度,用-4这样的数可以表示零下温度。

2.试一试:学生看温度计,写出各地的温度。并读一读。(写在卡片上)

师:我们再来了解一下其他几个城市的最低气温,注意观察温度计,把这些温度记录在卡片上,并读一读。准备好了吗?

香港:(19℃或+19℃)。写好了请举起你们的卡片。提问:你是怎么想到用+19℃来表示的?这位同学是用19℃来表示的?行吗?为什么?(对,正号可以省略不写)。

哈尔滨:(-10℃)。老师写了10℃后举起来:“和老师的记录一样的请举牌。为什么没人和我的一样啊?(对,零下10摄式度,我们用-10℃来表示,10摄式度是表示零上10摄式度的)。

西宁:你们记录好了,同桌互相校对一下再来交流。问:为什么这样用这个数来表示?

⒊我们再来听一段中央台的天气预报,将你听到城市的最低和最高温度记录下来。

播放中央台播音员播报的天气预报(天津 呼和浩特乌鲁木齐银川)

指名一位学生上前交流。师:你们觉得他记录怎样?这位同学的前面的正号没写,可以吗?老师把-1的负号去掉,你们同意吗?

谁能在温度计上拨出11℃?谁来拨-1℃?

小结:通过刚才的学习,我们得出:以零摄式度为界线,零上温度用正几或直接用几来表示,零下温度用负几来表示。

(三)自主学习珠峰、吐鲁番盆地的海拔表达方法,进一步认识正数和负数。

小学五年级上册数学教案【第二篇】

单元教学目标

1、使学生理解小数乘、除法计算法则,能够比较熟练地进行小数乘、除法笔算和简单的口算。

2、使学生会用“四舍五人法”截取积、商是小数的近似值。

3、使学生理解整数乘、除法运算定律对于小数同样适用,并会运用这些定律进行一些小数的简便计算。

教学内容

小数乘以整数 课型 新授课

教学目标

1、使学生理解小数乘以整数的计算方法及算理。

2、培养学生的迁移类推能力。

3、引导学生探索知识间的练习,渗透转化思想。

教学重点

小数乘以整数的算理及计算方法。

教学难点

确定小数乘以整数的积的小数点位置的方法。

教具准备

放大的复习题表格一张(投影)。

教学过程

一、引入尝试:

孩子们喜欢放风筝吗?今天我就带领大家一块去买风筝。

1、小数乘以整数的意义及算理。出示例1的图片,引导学生理解题意,得出:

⑴例1:风筝每个元,买3个风筝多少元?(让学生独立试着算一算)

(2)汇报结果:谁来汇报你的结果?你是怎样想的?(板书学生的汇报。)

用加法计算:++=元 元=3元5角

3元×3=9元 5角×3=15角 9元+15角=元

用乘法计算:×3=元 理解3种方法,重点研究第三种算法及算理。

⑶理解意义。为什么用×3计算? ×3表示什么?

(3个或的3倍。)

(4)初步理解算理。怎样算的? 把元看作35角

3.5元 扩大10倍 3 5角

× 3 × 3

1 0. 5 元 1 0 5角

缩小到它的1/10

105角就等于元

(5)买5个要多少元呢?会用这种方法算吗?

2、小数乘以整数的计算方法。

象这样的元的几倍同学们会算了,那不代表钱数的 ×5你们会算吗?(生试算,指名板演。)

⑴生算完后,小组讨论计算过程。

板书: 0.7 2

× 5

3、 6 0

(2)强调依照整数乘法用竖式计算。

(3) 示范:0. 7 2 扩大100倍 7 2

× 5 × 5

3、 6 0 3 6 0

缩小到它的1/100

(4) 回顾对于×5,刚才是怎样进行计算的?

使学生得出:先把被乘数扩大100倍变成72,被乘数扩大了100倍,积也随着扩大了100倍,要求原来的积,就把乘出来的积360再缩小100倍。(提示:小数末尾的0可以去掉)

(5)专项练习

①下面各数去掉小数点有什么变化?

②把353缩小10倍是多少?缩小100倍呢?1000倍呢?

③判断

1

× 2

0

(6)小结小数乘整数计算方法

计算 7 ×4 ×4 25×7 ×7

观察这2组题,想想与整数乘整数有什么不同?怎样计算小数乘以整数?

① 先把小数扩大成整数;

② 按整数乘法的法则算出积;

③ 再看被乘数有几位小数,就从积的右边起数出几位,点上小数点。

小学五年级上册数学教案【第三篇】

教学目标

1、使学生能理解质数、合数的意义,会正确判断一个数是质数还是合数。

2、知道100以内的质数,熟悉20以内的质数。

3、培养学生自主探索、独立思考、合作交流的能力。

4、让学生在学习活动中体验到学习数学的乐趣,培养学习数学的兴趣。

重点难点

质数、合数的意义。

教学过程:

复习导入

1、什么叫因数?

2、自然数分几类? (奇数和偶数)

教师:自然数还有一种新的分类方法,就是按一个数的因数个数来分,今天这节课我们就来学习这种分类方法。

新课讲授

1、学习质数、合数的概念。

(1)写出1 ~20各数的因数。(学生动手完成)

点四位学生上黑板写,教师注意指导。

(2)根据写出的因数的个数进行分类。

(3)教学质数和合数概念。

针对表格提问:什么数只有两个因数,这两个因数一定是什么数?

教师:只有1和它本身两个因数,这样的数叫做质数(或素数)。

如果一个数,除了1和它本身还有别的因数,这样的数叫做合数。(板书)

2、教学质数和合数的判断。

判断下列各数中哪些是质数,哪些是合数。

17 22 29 35 37 87 93 96

教师引导学生应该怎样去判断一个数是质数还是合数(根据因数的个数来判断)

质数:17 29 37

合数:22 35 87 93 96

3、出示课本第14页例题1。

找出100以内的质数,做一个质数表。

(1)提问:如何很快地制作一张100以内的质数表?

(2)汇报:

①根据质数的概念逐个判断。

②用筛选法排除。

③注意1既不是质数,也不是合数。

小学五年级上册数学教案【第四篇】

教学目标:

1、初步理解“平均数”的含义,探讨“求平均数”问题的分析方法。

2、能正确列式解答“求平均数”问题。

教学重点难点:

初步理解“平均数”的含义。探讨“求平均数”问题的分析方法。

教学过程:

一、引入

1、师:三个数学小伙伴都想和老师比赛投篮,1分钟内看谁投中的个数多。小胖1分钟投中了5个,他认为这不能完全代表他的水平,于是要求再给他两次机会,让他能充分发挥出水平。第二次,他投中了5个,第三次,还是5个。看来他的水平很稳定,用5来代表他1分钟投篮的水平合适吗?

二、新授

1、师:小淘气1分钟投了3个,他也要求再给两次机会。第二次投中5个,第三次投中4个。

刚刚小胖三次都投中5个,那显然就用5来代表小胖的水平。现在用几来代表小淘气1分钟的水平呢,说说理由。

生:用4来表示……; 用5来表示……。

师:用超常发挥的补救发挥失常的,这时候,用4来代表他的水平比较合适。这个方法叫做移多补少。(板书)还有其它想法吗?

生:因为4在3和5的中间;把超常发挥和发挥失常的去掉,他们不具备代表性;因为4是3、4、5的平均数……

师:不管超常发挥还是发挥失常,都是他自己投的,就先求和再均分,(板书)能使每一次的个数一样多。移多补少的目的也是将每一次的个数变成一样多(板书)。用一样多的这个数来代表他的水平合适吗?

遇到这样数据多多少少的,就可以通过先求和再均分,找到能代表他水平的数。

2、师:小丁丁直接要求有3次机会,不看不知道,一看吓一跳。

第一次投了3个,第二次投了7个,第三次2个,看来水平很不稳定,一起用手势高低来表示他的三次投篮结果。

师:你觉得用几来代表他1分钟的水平呢?

生:计算,是4。

师:4是从哪里来的?前面的小淘气是3个、4个、5个,好歹还有个4出现,这里一个4都没有,怎么会用4来代表呢?和同桌说说道理。

生:3+7+2=12个 12÷3=4个(板书算式)

生:还可以用移多补少的方法,把7拿出1给3,再拿出2给2。(媒体)

师:现在用4来代表小丁丁的水平合适吗?不管是求和均分还是移多补少,这两个方法的目的都是使得数据变得同样多,像这样通过求和均分或者移多补少,使得数据变得同样多,就是在求原来这些数据的平均数。(板书)

我们说,4是3、7、2这3个三个数的平均数。

那么小淘气的投篮水平也是4,这个4又是哪些数的平均数呢?

生:他投了3次,所以4是3、4、5的平均数。

师:这个4能代表小丁丁第一次的投篮水平吗?能代表他第二次的投篮水平吗?能代表他第三次的投篮水平吗?我们辛苦了那么久,结果这个4既不能代表第一次的水平,又不能代表第二次的水平,也不能代表第三次的水平,那它到底代表的什么呢?

师:平均数不代表某一次的水平,而是代表这一组数据的平均水平、整体水平。(板书)

3、师:终于轮到老师投篮了,老师想要4次投篮机会,小朋友会同意吗?为什么?

师:小丁丁笑了,老师,我们比的是平均水平,又不是比总数,你投好了,还要除以4,投得差了,仍然要除以4,更差了。我们就同意你投4次。

老师第一次1分钟投进了4个,第二次6个,第三次5个。到这里老师心里十分后悔,如果只投三次就好了。老师想就此收手,你们猜3个小朋友会同意吗?为什么?老师如果投第四次,可能赢吗?也可能输。

老师第四次投中了1个。我赢了还是输了?算一算。

如果我第四次投中了5个,我的水平是多少?如果第四次投中了9个呢?

三、练习

1、姚明比平均身高高,既然有人比平均身高高一点,就有人的身高……

不然移多补少补给谁去呢?

2、平均身高160,但不是人人都160,排在中间的人一定是160吗?

3、平均水深才110,所以以他140的身高肯定淹不死,是吗?

生:这是平均水深,是移多补少的结果,是求和均分的结果,也许有的地方比140深得多。

出示水下图片。

师:掌握了平均数以后,回到生活中再来看在这些数据还会上当吗?

4、有一则调查新闻,说先在的男性平均寿命是71岁。30年过去了,男性平均寿命从68上升到了71,该高兴还是难过?可是一个老爷爷看到新闻都难过得哭出来了,他今天刚过了70岁生日,你觉得他为什么会难过?他有必要去难过吗?说明他不懂平均数。你懂不懂平均数?你能用今天学的本领来劝劝他,让他喜笑颜开吗?

5、想不想猜一猜女性的平均寿命比男性长还是短?出示。《2010年世界卫生报告》显示:目前,中国男性的平均寿命大约是71岁,女性的平均寿命大约是74岁。

四、总结

221381