小学六年级上册数学《圆的面积》教案(精选4篇)

网友 分享 时间:

【前言导读】此篇优秀教案“小学六年级上册数学《圆的面积》教案(精选4篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

推导圆面积计算公式的三种教法评介【第一篇】

推导圆面积计算公式的三种教法评介

教学圆面积公式的推导,我曾听过三种不同的教法,现分别简介过程及稍作评点。

〔第一种教法〕

(1)复习长方形面积计算公式。

(2)让学生自学课本中推导圆面积计算公式的过程。

(3)教师边用教具演示,边要求学生回答:

①拼成的图形近似于什么图形?想一想,如果等分的份数越多,拼成的图形会怎么样?

②拼成的图形与原来圆的面积相等吗?

③这个近似长方形的长相当于圆的什么?它的宽相当于圆的什么?

(4)教师要求学生说出由长方形面积计算公式,推导出圆面积计算公式的方法(可按课本说)。

(5)揭示圆的面积公式。

〔评:这种教法,看起来是引导学生自学,并结合演示让学生回答问题,似乎学生学得较主动,实际上学 生未有实践、思考的过程,只是“依样画葫芦”,对其中的道理不能弄懂、弄通,这属于机械的学习。〕

〔第二种教法〕

1、导入新课。

教师让学生回忆一下,以前学习习近平行四边形、三角形、梯形的面积计算时,是用什么方法推导它们的计算 公式的。(用割、拼法拼成长方形或平行四边形进行计算,教师出示割、拼教具分别作简单的演示。)接着, 出示一张圆形硬纸片,问:“怎样计算它的面积呢?”(揭示课题)教师指出:我们仍可用以前学过的割、拼 法,把圆转化为已学过的图形,运用此图形的面积计算方法,推导出圆面积的计算方法。

2、实际操作。

要求学生拿出圆面积的割拼图形学具,在教师的指导下,边操作,边回答以下问题:

①把一个圆平分成两半,每一个半圆形的哪一部分长度相当于圆周长的1/2?再把每一个半圆形平均分 成8等份(如课本的切割图),那么哪一段的长度相当于圆的半径?

②想一想:能不能把这些等分出的图形,拼成近似于我们以前学过的`图形?怎样拼?(要求学生动手实践 ,并指名演示拼出的几种不同的图形。如:长方形、平行四边形、梯形等。)

③所拼出的图形面积与原来圆面积相等吗?

3.推导公式。

先以拼出的近似长方形的图形为例,教师引导学生弄清,若平分的份数越多,拼成的图形越接近长方形。 进而,教师要求学生据图回答:割拼后的长方形的长相当于圆的哪一部分的长度?宽相当于圆的哪一部分的长 度?从而

由 长方形的面积=长×宽

↓ ↓

得 圆的面积 =πr×r=πr[2]。

然后,出示拼出的近似的平行四边形或梯形,再次推导看能否得出上面的圆面积公式(略)。这样就得到 了证实,使学生确信无疑。

〔评:这种教法比第一种教法有很大的改进,教师首先通过复习旧知,提出解决问题的办法,把新旧知识 有机结合起来,明确了本课中心内容,然后让学生亲手操作割拼成几种已学过的图形,引导学生观察、思考、 比较、推导,其间不囿于课本中的推导方法,让学生思维得以发散,从而强化了转化思想,多渠道地推得圆面 积计算公式。学生在学习过程中,始终处于积极主动的状态,这种学习是有意义的学习,不仅使他们“学会” ,而且使他们“会学”,且有助于发展学生的智能。〕

〔第三种教法〕

1、引入新课。

教师开导:圆在

[1] [2]

《圆面积公式推导》教学设计(西师版六年级上册【第二篇】

《圆面积》试讲教案及反思

[教学目标]

1、使学生明确圆面积的概念;

2、使学生通过操作及课件的演示理解和掌握圆面积公式的推导方法;

3、使学生能够用圆的面积公式解决实际问题;

4、结合知识的学习,渗透转化的思想和极限的教学思想。

[教学重点和难点]

圆面积概念的建立;公式的推导及应用;转化和极限思想的渗透。

[教学准备]

学生:圆形纸板、剪刀、彩笔、三角板等学具。

教师:相应课件

[教学过程设计]

一、通过复习及“前导”明确概念

首先利用课件的“前导”演示,让学生直观感知 画圆留下的轨迹是条封闭的曲线;其次,在内填充颜色并分离,让学生明确:这条封闭的曲线长度是圆的周长;填充的部分是曲线围成的面是圆的面积。接着,让学生摸一摸手中圆形纸片的面积和周长,亲身体验一下。

反思:圆的面积是在圆的周长和半径的基础上进行教学的,而周长和面积又是圆的两个基本概念,学生必须明确区分。通过比较鉴别,并结合学生亲身体验,让学生摸一摸手中圆形纸片的面积和周长,进一步理解概念的内涵,从而顺利揭题《圆的面积》。

二、通过设想及“演示”以旧促新

1、设想

师:我们认识了圆的面积,那么该如何计算圆的面积?该怎样发现和推导圆的面积公式呢?你能否根据以前学过的平面图形面积计算公式的推导过程来设想一下怎样计算圆的面积吗?

生:DDDDDDDDDDD。

2、让学生讨论、交流,发表见解,然后根据学生的回答再通过课件的“演示”再现平行四边形、三角形、梯形面积公式的推导过程。分析、对比各个公式推导过程的共同点和不同点,给学生以视觉的刺激,使学生领会到把一个图形转化成已学过的图形,从而推导出这个图形面积的计算公式。

反思:通过这一环节,渗透一种重要的数学思想,那就是转化的思想,引导学生抽象概括出:新的问题可以转化成旧的知识,利用旧的知识解决新的问题。从而推及到圆的面积能不能转化成以前学过的平面图形!如果能,我可以很容易发现它的计算方法了。让学生迅速回忆,调动原有的'知识储备,为新知的“再创造”做好知识的准备。

三、动手操作及“演示”完成圆形的转变

1、师:通过上面的设想和演示知道了以前学过的平面图形的计算公式的推导是把该图形转化成以学过的图形,从而推导出这个图形的面积计算公式,那么你们能否按照老师的分法动手把你手中的学具―圆,分成8等份,剪开并合拼(随之出示“演示”中的把圆分成4等份的剪拼)

学生:小组合作动手摆一摆,把手中的圆的学具转化成学过的平面图形。

2、师:让学生观察它像什么图形?为什么说“像”平行四边形?

学生:发表自己的意见。

师:充分肯定学生的观察。

师:如果说8等份有点像,那么再来看看16等份会怎么样?(电脑演示16等份的圆,放在一起比较)哪个更像平行四边形? (学生会发现16等份比8等份更像!因为它的底波浪起伏比较小,接近直的。)

师:引导学生闭上眼睛想象,如果分成32等份会怎么样?64等份呢?……

(电脑继续演示分成32等份的圆,64等份的圆的分割、拼合)

3、 电脑出示:把圆4、8、16、32等分的组合转化图。

让学生观察、比较、讨论充分发表自己的观察结果。

反思:让学生展开想象的翅膀,从而得出等分的份数愈多,拼成的平行四边形就愈像,就愈接近,完成另一个重要数学思想―极限思想的渗透。

四、通过推想及“演示”得出公式

师:我们通过刚才的动手操作和电脑的演示,知道了一个圆经过等分与拼接能转化成一个长方形。请再次观察在拼接的过程中,图形的面积是否发生了变化?

生:DDDDDDDDD(使学生明确,在拼接的过程中,图形的面积没有发生变化,该圆的面积等于拼成的长方形的面积)

师:那么,在观察的过程中,你是否发现,这个长方形的长、宽与圆的什么有关系?有什么关系?将你的发现和同学们交流一下。

生:---------------------(使学生明确:这个近似长方形的长相当于圆周长的一半,即 = ;宽就是圆的半径r)

师:打出课件让学生进一步观察比较,验证自己的观察结果。

师:谁能根据我们的观察结果,推导出圆的面积公式?

生:(讨论、交流、发表见解)

教师根据学生的发言,随之打出课件“圆的面积计算公式:

s=πr

反思:在教师的引导下,使学生通过自己主动的观察、思考、交流。运用已有的经验去体验新知,把圆转化成已学过的长方形来推导出圆面积的计算公式。通过实验操作,经历公式的推导过程,不但使学生加深对公式的理解,而且还能有效的培养学生的逻辑思维能力和勇于探索的科学精神,学生在求知的过程中体会到数形结合的内在美,品尝到成功的喜悦。

五、实际应用

(教师逐一展示本组课件,让学生积极讨论、交流、发表各自的见解)

题一、已知一个圆的半径是5厘米,求这个圆的面积?(图)

题二、一个圆桌的直径是90厘米,请你算一算这个圆桌面的面积是多少?(图)

题三、一只要换底的圆形水桶,经师傅量得底面周长是81.64厘米,你能否帮助师傅计算一下至少用多少铁皮?(图)

总结:1、回顾圆面积的推导过程;

2、讨论并得出求圆面积应具备那些条件?

反思:这组循序渐进的实际应用课件的展示,力求使学生掌握圆面积的计算公式,明确圆周

长公式与圆面积公式的内在联系,提高在生活和生产中需要用圆面积计算公式来解决实际问题

的能力,力求使学生在情景中建立空间观念。

圆的面积教案【第三篇】

教学目标

1.使学生理解圆面积公式的推导过程,掌握求圆面积的方法并能正确计算;

2.培养学生动手操作的能力,启发思维,开阔思路;

3.渗透初步的辩证唯物主义思想。

教学重点和难点

圆面积公式的推导方法。

教学过程设计

(一)复习准备

我们已经学习了圆的认识和圆的周长,谁能说说圆周长、直径和半径三者之间的关系?

已知半径,圆周长的一半怎么求?

(出示一个整圆)哪部分是圆的面积?(指名用手指一指。)

这节课我们一起来学习圆的面积怎么计算。

(板书课题:圆的面积)

(二)学习新课

1.我们以前学过的三角形、平行四边形和梯形的面积公式,都是转化成已知学过的图形推导出来的,怎样计算圆的面积呢?我们也要把圆转化成已学过的图形,然后推导出圆面积的计算公式。

决定圆的大小的是什么?(半径)所以,分割圆时要保留这个数据,沿半径把圆分成若干等份。

展示曲变直的变化图。

2.动手操作学具,推导圆面积公式。

为了研究方便,我们把圆等分成16份。圆周部分近似看作线段,其用自己的`学具(等分成16份的圆)拼摆成一个你熟悉的、学过的平面图形。

思考:

(1)你摆的是什么图形?

(2)所摆的图形面积与圆面积有什么关系?

(3)图形的各部分相当于圆的什么?

(4)你如何推导出圆的面积?

(学生开始动手摆,小组讨论。)

指名发言。(在幻灯前边说边摆。)

①拼出长方形,学生叙述,老师板书:

②还能不能拼出其它图形?

学生可以拼出:

刚才,我们用不同思路都能推导出圆面积的公式是:S=r2。这几种思路的共同特点都是将圆转化成已学过的图形,并根据转化后的图形与圆面积的关系推导出面积公式。

例1 一个圆的半径是4厘米,它的面积是多少平方厘米?

S=r2===(平方厘米)

答:它的面积是平方厘米。

想一想;求圆面积S应知道什么?如果给d和C,又怎样求圆面积?

圆的面积教案【第四篇】

教材分析:

初步认识了圆,学习了圆的周长,以及学过几种常见直线几何图形面积的基础上进行教学的。学生从学习直线图形的面积,到学习曲线图形的面积,不论是内容本身还是研究方法,都是一次质的飞跃。学生掌握了圆面积的计算,不仅能解决简单的实际问题,也为以后学习圆柱、圆锥的知识打下基础。

学情分析:

学生已经有了平面几何图形的经验,知道运用转化的思想研究新的图形的面积,在学习中要鼓励学生大胆想象、勇于实践。在操作中将圆转化成已学过的平面图形,从中找到圆的面积与半径、直径的关系。

教学目标:

1、通过操作、观察,引导学生推导出圆面积的计算公式,并能解决一些简单的实际问题。

2、培养学生观察、分析、推理和概括的能力,发展学生的空间观念,并渗透极限、转化的数学思想。

3、通过小组合作交流,培养学生的合作精神和创新意识,提高动手实践和数学交流的能力,体验数学探究的乐趣和成功。

4、在圆面积计算公式的推导过程中,运用转化的思考方法,通过让学生观察曲与直的转化,向学生渗透极限的思想,使学生受到辩证唯物主义观点的启蒙教育。

教学重点:

通过观察操作,推导出圆面积公式及其应用。

教学难点:

极限思想的渗透与圆面积公式的推导过程。

教学过程:

活动一:创设情景,提出问题

1、课件出示羊吃草的动画:一个放羊娃将一只小山羊用一根绳子把它拴在木桩上。请问小山羊最多能吃到多大范围的草呢?

2、圆的面积--含义:圆所占平面的大小叫做圆的面积。

3、如果将绳子加长一点,又会出现什么情况?产生这种变化的原因是什么?这说明了什么?

活动二:猜想比较:

出示图

师:看了这两幅图形,你发现了什么?右图小正方形的面积是多少?左图大正方形的面积是多少?你能猜一猜圆的面积和大正方形面积有什么联系吗?

活动三:自主探究,验证猜想

1、引导转化:

师:回忆以前学过的平面图形,它们的面积公式是什么?分别怎么推导出来的?

以上这些图形都是通过剪拼,转化成已学过的图形,再进行推导。那么圆是否也可以把它剪拼转化成为熟悉的平面图形呢?

2、动手操作:

(1)分小组动手操作,把圆剪拼转化成其他图形,看谁拼得好,拼出的图形多。

操作引导:

A、剪--怎样剪?剪成几份?

B、拼--怎样拼?拼成什么?

(2)展示交流并介绍,选出最合理的剪法。

(3)拼成后的近似长方形和标准长方形比较,你发现了什么?能不能把边再变得直一点?

想象一下,平均分成64份、128份、256份。会是什么情形?(课件演示)

(4)小结:平均分的份数越多,边越直,拼成的图形越接近于长方形。

3、自主推导

(1)小组合作,选择喜欢的1~2个图形,尝试推导公式。

(2)学生展示、介绍自己的推导过程

(3)教师板演圆面积的推导过程

4、情景延续:

(1)如果绳长为5米,计算圆的面积和周长。

(2)将绳子加长为原来的2倍,那么羊能吃到草的面积也是原来的2倍。对吗?

5、小结:同学们通过大胆猜想和动手验证,终于得到了圆面积的计算公式,你们真了不起!那么,求圆的面积需要什么条件呢?(是否只有知道半径才能求圆的面积?)

活动四:实践运用,体验生活

1、量出自己带来的圆形物体的直径,并计算出面积。

2、社区公园有一个圆形水池(中有假山),请想办算出水面面积。

活动五:全课小结

通过本节课的学习你有哪些收获?

221381