《因数和倍数》教学设计【最新4篇】

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“《因数和倍数》教学设计【最新4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《倍数和因数》教学设计【第一篇】

教学过程:

一、创设情境,引入新课

师:人与人之间存在着许多种关系,你们和你们的妈妈之间是什么关系……

生、母子、母女关系。

师:我和你们的关系是……

生:师生关系。

师:对,我是你们的老师,你们是我的学生,我们的关系是师生关系。在数学中,数与数之间也存在着多种关系,这一节课,我们一起探讨两数之间的因数与倍数关系。(板书课题:因数与倍数)

二、认识因数与倍数

师:现在我们来研究自然数中数与数之间的关系。请你们用12个小正方形摆成不同的长方形,并根据摆成的不同情况写出乘法算式。

根据学生的汇报板书:

1×12=12 2×6=12 3×4=12

12÷1=12 12÷2=6 12÷3=4

师:在这3组乘算式中,都有什么共同点?

生:第①组每个式子都有1、12这两个数。

生:第②组每个式子都有2、6、12这三个数。

生:第③组每个式子都有3、4、12这三个数。

师:(指着第②组)像这样的乘式子中的三个数之间的关系还有一种说法,你们想知道吗?请看大屏幕

师:2和6与12的关系还可以怎样说呢?

生:2和6是12的因数,12是2的倍数,也是6的倍数。

师:也就是说,2和12、6的关系是因数和倍数的关系,这几组算式中,谁和谁还有因数和倍数的关系?

生:3、4和12有因数和倍数关系,3和4是12的因数,12是3和4的倍数。

生:我认为1和12也有因数和倍数关系。1是12的因数,12是1的倍数。

师:可以说12是12的因数吗?

生:我认为可以,12×1=12,1和12都是12的因数。

师:说得真好,从上面3组算式中,我们知道1,2,3,4,6,12都是12的因数。

师出示:12÷2=5……2。问:12是2的倍数吗?为什么?

生:我认为不是,因为12除以2有余数。

师:你能举一个算式,并说说谁是谁的倍数,谁是谁的因数吗?

生:2×4=8,2和4是8的因数,8是2和4的倍数。

生:40÷2=20,40是2和20的倍数,2和20是40的因数。

师出示:0×3 0×10

0÷3 0÷10

通过刚才的计算,你有什么发现?

生:我发现0和任何数相乘,都等于0。

生:0除以任何一个数都等于0。

生:我补充,0不能作为除数。

师:所以在研究因数和倍数时,我们所说的数一般指整数,不包括0。

生:我有一个疑问,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系,这两种说法一样吗?

师:这个问题提得好!谁能回答他的问题?

生:我觉得好像不一样,但不知道为什么?

生:我认为不一样,在2×6=12中,2叫因数是指在算式中它的名称,而2是12的因数指的是2和12的关系。

师:说的真好。这节课我们研究因数与倍数的关系中所说的因数不是以前乘法算式中各部分名称中的“因数”,两者可不能混哦!

三、师生交流、合作探究:

1。出示例1:18的因数有哪几个?

从12的因数可以看得出,一个数的因数不止一个,那么我们一起找找看18的因数有哪些?

学生尝试完成并交流汇报,说说你是怎么找的?(18的因数有:1,2,3,6,9,18)

我们在写的时候怎样写才能做到不遗漏、不重复?

(生:用乘法一对一对找,如1×18=18,2×9=18…;用整除的方法,18÷1=18,18÷2=9,18÷3=6,18÷4=…)

5。小结:我们找了这么多数的因数,你觉得怎样找才不容易漏掉?(从最小的自然数1找起,也就是从最小的因数找起,一直找到它的本身,找的过程中一对一对找,写的时候从小到大写。)

四、“动脑筋出教室”游戏课件

五、课堂练习

1、请你来做小法官

(1)4×9=36,所以36是倍数,9是因数( )

(2)48是6的倍数。 ( )

(3)在13÷4=31中,13是4的倍数。 ( )

(4)6是36的因数。 ( )

(5)在4x0。5=2中,4和0。5是2的因数。 ( )

2、细心填一填

(1)、1的因数是( )

(2)、一个数的最大因数是24这个数是()它的最小的因数是()。

(3)、自然数32有()个因数,它们是( )。

(4)、16的因数有( )

(5)、19的因数只有( )和( )。

3、我最聪明,我来回答

(1)、27的因数有哪些?

(2)、27是哪些数的倍数?

六、课时小结:

本节课大家学习到什么知识,还有什么不明白的地方吗?有什么疑问请提出来我们共同来解决。

七、板书设计

因数和倍数

1×12=12 12÷1=12

2×6=12 12÷2=6

3×4=12 12÷3=4

因为:a×b=c,(a,b,c都是不为0的整数)

所以:a,b都是c的因数,c是a,b的倍数

教学内容:

《义务教育课程标准实验教科书数学(五年级下册)》第12~13页。

教学目标:

1、从操作活动中理解因数和倍数的意义,会判断一个数是不是另一个数的因数或倍数。

2、培养学生抽象、概括的能力,渗透事物之间相互联系、相互依存的辩证唯物主义观点。

3、培养学生的合作意识、探索意识,以及热爱数学学习的情感。

教学重点:

理解因数和倍数的含义。

教学难点:

能准确、全面的求一个数的因数。

教学反思:

教学《因数和倍数》,这是一个非常枯燥的课题,但我巧妙地运用生活中人与人之间的关系,自然引入到数与数之间关系。为了让学生理解因数和倍数的含意,教学过程中,我立足体现一个“实”字,充分应用多媒体的优点,学生从算式中找出能整除的算式,揭示整除、倍数、因数之间的关系,再通过举例去验证倍数与因数之间的联系,在推理中“悟”出知识的规律。学生在学习中实实在在经历了一个探究的过程。“动脑筋出教室”这一游戏的设计,学生在积极参与探讨、质疑、创造的教学活动,既巩固了知识,又享受了数学思维的快乐。

在授课时,我体验到了学生的快乐。当学生用自己的学号说整除、因数、倍数之间的关系时,由于像顺口溜,很有趣。每个学生都在愉快中学会了这节课的知识。

《因数和倍数》数学教案【第二篇】

教学目标

1、知识与技能

掌握因数、倍数的概念,知道因数、倍数的相互依存关系。

2、过程与方法

通过自主探究,使学生学会用因数、倍数描述两个数之间的关系。

3、情感态度与价值观

使学生感悟到数学知识的内在联系的逻辑之美。

教学重难点

教学重点

掌握找一个数的因数、倍数的方法。

教学难点

能熟练地找一个数的因数和倍数。

教学工具

课件、投影

教学过程

一、迁移引入

同学们,在我们的日常生活中,人与人之间存在着许多相互依存的关系,如:佳爸是佳佳的爸爸,佳佳是佳爸的儿子。其实在我们的数学王国里,数与数回见也存在着这种相互依存的关系,请看大平米,认识这些吗?(课件出示:0,1,2,3,4,5……)

这些自然数。(课件去“0”)

去0后这又是什么数?(非零自然数中。)这节课我们就在非零自然数中来研究数与数之间的这种相互依存的关系。

板书:因数和倍数

二、情境创设,探究新知

1、理解整除的意义。

(1)出示例1,在前面学习中,我们见过下面的算式。

12÷2=6 8÷3=2……2 30÷6=5 19÷7=2……5 9÷5=

26÷8= 20÷10=2 21÷21=1 63÷9=7

你能把这些算式分类吗?

(2)分类所得:

12÷2=6 20÷10=2

30÷6=5 21÷21=1

63÷9=7

8÷3=2……2 9÷5=

19÷7=2……5 26÷8=

(3)观察发现,合作交流。

观察算式,说一说谁是谁的倍数,谁是谁的约数。

2、理解因数、倍数的意义。

12÷2=6中,我们就说12是2的倍数,2是12的因数。12÷6=2,所以12是6的倍数,6是12的因数。由此可知:(在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。)

3、总结归纳

(1)在整数除法中,如果商是整数而没有余数,我们就说被除数是除数的倍数,除数是被除数的因数。

(2)因数与倍数是相互依存的关系。

4、注意:

为了方便,在研究因数和倍数的时候,我们所说的数指的是自然数(一般不包括0)。

5、做一做。

下面的4组数中,谁是谁的因数?谁是谁的倍数?

4和24 36÷13 75÷25 81÷9

6、教学例2

18的因数有哪几个?

18的因数有1、2、3、6、9、18。

也可以这样用图表示。

18的因数

1,2,3,

6,9,18

30的因数有哪些?36呢?

7、教学例3

2的倍数有哪些?

2的倍数有2、4、6、8……

2的倍数

2,4,6,

8,10,12,

14,……

3的倍数有哪些?5呢?

8、小组讨论,归纳总结

一个数的最小因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,一个数的倍数的个数是无限的。

课后小结

一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。

课后习题

1、填空。

(1)36是4的( )数。

(2)5是25的( )。

(3)是的( )倍。

2、下面各组数中,有因数和倍数关系的有哪些?

(1)18和3 (2)120和60 (3)45和15 (4)33和7

3、24和35的因数都有哪些?

板书

一个数的最小因数是有限的,其中最小的因数是1,最大的因数是它本身。一个数的最小倍数是它本身,没有最大倍数。

一个数的因数的个数是有限的,最大的因数是它本身。一个数的倍数的个数是无限的。

《因数和倍数》教学设计【第三篇】

1. 因数和倍数的定义

2和6是12的因数,12是2的倍数,12也是6的倍数

18的因数有1、18、2、9、3、6

2. 一个数的因数个数是有限的,一个数的倍数有无数个

任何数都有最小的因数1,最大的因数本身,最小的倍数也是本身

3. 2、3和5倍数的特征

2的倍数的数特征是个位是0、2、4、6、8,是2的倍数的数叫偶数,不是2的倍数的数叫奇数

5的倍数的数特征是个位是0或5

3的倍数的数特征是一个数各位上的数字的和是3的倍数,这个数就是3的倍数

4. 只有1和本身两个因数的数叫做质数(或素数)

5. 除了1和本身外还有其它因数的数叫做合数

6. 1既不是质数,也不是合数

7. 100以内的质数总共25个,它们是:

2 3 5 7

11 13 17 19

31 23 37 29

41 43 47 59

61 53 67 79

71 73 97 89

83

补充知识:

的倍数的数特征是一个数各位上的数字的和是9的倍数,这个数就是3的倍数

2.既是2的倍数,又是5的倍数的数的特征是个位必须是0

和25的倍数的特征是末二位是4或25的倍数

和125的倍数的特征是末三位是8和125的倍数

5.如果a和b都是c的倍数,那么a-b和a+b一定也是c的倍数

6.如果a是c的倍数,那么a乘以一个数(0除外)后的积也是c的倍数

7. 偶数+偶数=偶数 偶数-偶数=偶数 偶数×偶数=偶数

偶数+奇数=奇数 偶数-奇数=奇数 偶数×奇数=偶数

奇数+奇数=偶数 奇数-偶数=奇数 奇数×奇数=奇数

奇数-奇数=偶数

无论多少个偶数相加都是偶数

偶数个奇数相加是偶数

奇数个奇数相加是奇数

《倍数和因数》教学设计【第四篇】

一、教学过程:

(一)动手操作,感受并认识因数与倍数。

1、老师和同学们都在课前准备了几个小正方形,如果用这些小正方形拼成一个长方形,可以怎么拼?(让学生独立拼摆)

2、全班交流,请学生上黑板拼一拼,拼法用乘法算式表示出来。

指出:有三种拼法,列出三个不同的乘法算式,今天我们研究的内容就藏在着三个算式中。

3、教师选择一个算式指出4×3=12,4是12的因数,12是4的倍数,看这个算式还可以说:谁是谁的因数?谁是谁的倍数吗?

4、揭示课题:倍数和因数。

5、看其他两个算式,你还能说什么吗?你觉得哪个算式给你的感觉有些特别?

6、自己写一个乘法算式,让你的同桌说一说谁是谁的因数,谁是谁的倍数,选一些特殊的例子:如0×8=0的形式16÷2=8。辨析:能不能说16是倍数,2是因数。

7、完成想想做做(1)。

8、完成想想做做(2)。(交流:应付元数与4元有什么关系?省略号表示什么意思?从这个省略好你知道了什么?)

9、想想做做(3)。(从中发现了什么?24有那些因数?最大的是几?最小的是几?)

(二)找倍数和因数。

1、找一个数的倍数(让学生自己在纸上写,然后交流:你是怎么找的?)

提问:

(1)3的最小的倍数是几?最大的呢?

(2)3的倍数有无数个,那么该怎么表示?

2、完成试一试。

反思:怎样找一个数的倍数比较方便?一个数的倍数最小是几?找得到最大的倍数吗?

3、找一个数的因数。

先让学生独立找36的因数,再进行交流。

提问:36最小的因数是几?最大的呢?怎样找才能保证不重复不遗漏?对好的方法及时的给以肯定。

完成试一试

4、提问:15的最小因数是几?最大的因数是几?16呢?你有什么发现?

5、巩固练习:

(1)4的倍数有:

(2)25以内4的倍数有:

(3)30的因数有:

(4)15的因数有:

(三)课堂小结:略。

(四)作业布置:

1、6的倍数有:

2、7的倍数有:

3、100以内9的倍数有:

4、24的因数有:

5、11的因数有:

二、教学反思:

本节课重点围绕“理解倍数和因数的含义,能按要求找出一个数的倍数和因数”进行教学。在写一个数的倍数和因数时,要让学生经历探索的过程,在相互交流时,得出最优的方法,在探索倍数和因数的规律时,既不能让学生毫无目的的去探究,也不能把这个结论直接告诉学生。

先出示一些具体的数,从这些具体的数的基础上进行探究,起到了较好的效果。在探究一个数的因数的方法时,先在前面孕伏着除法中也有倍数和因数,为探究一个数的因数埋下了伏笔。这个方法要比倍数的方法难一些,教师要有耐心,把学生的方法全部板书在黑板上,然后通过比较,发现商也是这个数因数,又发现一个数的因数,是成队出现的,所以怎样做到既不重复,又不遗漏,就要有序思考,与前面学过的找规律的方法有机地联系在一起。

16 794914
");