《加法交换律和结合律》教学设计【4篇】

网友 分享 时间:

【阅读指引】阿拉文库网友为您分享整理的“《加法交换律和结合律》教学设计【4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

小学数学《加法的交换律和结合律》教案设计【第一篇】

教学内容:

苏教版小学数学四年级下册第56—57页例2,及“试一试”、“练一练”。

教学目标:

1、让学生经历运用加法运算律进行简便计算的探索过程,掌握其计算方法,会正确地进行简便计算。

2、在教学过程中,培养学生思维的灵活性,培养学生初步的逻辑思维能力。

3、让学生在学习过程中进一步体验数学与生活的联系,感受简便计算的乐趣,培养学习数学的积极情感。

教学重点:

理解并掌握如何运用加法运算律进行简便计算。教学难点:能灵活运用加法运算律进行简便计算和解决问题。

教学准备:

电子白板

教学过程:

一、复习准备

1、师:上节课我们学习了加法的两个运算律,谁能告诉大家用字母怎样来表示?各是什么意思?

生1:a+b=b+a(两个数相加,交换加数的位置,和不变,这是加法交换律。)

生2:(a+b)+c=a+(b+c)(三个数相加,可以先把前面两个数相加;也可以先把后面两个数相加,它们的和不变。)

2、进行一个抢答小比赛:

师:看得出大家对这两个运算律已经掌握的不错了。接下来咱们来一个抢答比赛。比比谁最快说出气球上三个数的和。算好了直接站起来报得数。

(64、19、36)

(38、18、32)

(75、27、63)

出示第一组气球:64、19、36

学生口答后提问:你怎么算的这么快的?你怎么想到先将64和36相加呢?

明确:把能凑成整百的数先加起来,再与另一个数相加,这样比较简便(板书“简便”)。

出示第二组气球:75、27、73

师:怎么算的?这样算真简便。下一组。

出示第三组气球:38、18、32

师:这题没有两个数相加得100的,咱们怎么办的?

3、小结:

谈话:看来,要想算的快,是有窍门的。只要找到了方法,把能凑成整十或整百的数先加起来,再与另一个数相加,这样计算就更简便。我们今天就要一起研究,如何简便计算。(补全课题:简便计算)

二、用加法运算律进行简便计算

1、教学例题。

出示书P57的例题图。

师:会跳绳吗?从图中你了解到哪些数学信息?

能提出用加法计算的问题吗?会列式计算吗?

先让学生独立列式计算。教师巡视,指名板演。

交流反馈:这两位同学的答案对吗?他们分别是怎么算的框出29+46+54=29+(46+54)

提问:这两个式子为什么相等?这两种方法,哪种方法更简便?他是怎样让计算变得简便的?

谈话:运用加法结合律,将相加能凑成整百的数先加起来,再与另一个数相加,计算更简便。

2、教学“试一试”。

谈话:下面两题,你能试着用简便方法计算吗?

出示“试一试”两题:56+69+2178+(47+22),学生独立完成。同桌之间说一说,你是怎么算的,依据是什么?

班级交流:选取一组同桌上台展示计算过程,并讲解算法及依据,其他同学补充。

3、小结:

观察黑板上的这3题,我们是如何进行简便计算的?明确:运用加法交换律和加法结合律,我们可以把能凑成整十、整百的数先加起来,再与另一个数相加,让计算变得简便。这就是我们今天学习的,应用加法运算律进行简便计算。(补全课题)

三、及时训练,巩固提高

1、解决实际问题(练习九第7题):

谈话:掌握了简便计算的方法,我们还要用它们来解决实际问题。(课件出示)学生独立完成练习九第7题。

校对答案。

提问:怎样算比较快?

谈话:简便计算可以帮助我们更快地解决问题。因此,解决问题时,如果能简便,尽量简便。

2、两个数相加:

谈话:刚才我们做的都是三个数相加的算式,同学们做得不错。接下来还有一些挑战题敢不敢试试?

出示:175+201。

师:这一题你能简便运算吗?两个数,如何凑呢?

换个思路,可不可以先“拆”?

师:拆哪个数?(生:拆那个最接近整百的数。)

师根据学生回答板书。

师:先拆再凑的办法真好,谁想出来的,“小数学家”。这两题能用先拆再凑的方法做吗?

出示:354+102205+417。

师:同桌先互相说一说,你打算拆哪个数。

学生完成在练习本上。指名板演。交流反馈。

出示246+198。

提问:这道题目,你能想办法简便计算吗?小组之中说一说,再独立计算。

指名板演,共同订正。

明确:198很接近200,我们可以将它先看成200去计算。但是这样多加了2,因此还要减去2。

出示刚才做的几道题目

提问:刚才我们算的这几题,都是怎样让计算变得简便的?分别改变了哪个数?(学生口答,教师课件将改变的数圈出)

提问:改变的都是什么样的数?

明确:都将一个加数看成和它接近的整百数,然后多加了就减去,少加了就补上。

师:这几道算式,分别应该改变哪个数?

口答:204+328436+97299+153。

3、拓展题:

提问:现在,你会简便计算了吗?要想运算更简便,关键是什么?那么,我们来几个难点的挑战,不要被打倒哦!

①99+199+2,小组中说一说,再在班级交流。

②36+28+44+72,怎么算更简便?同桌之间说一说,再列式计算。

③1+2+3+4+……+98+99+100。

好样的,还想继续挑战吗?一百个数呢?(同学们自己独立完成)

交流:指名说方法。

师:当之无愧的小数学家呀,想知道世界上最早用运用简便方法计算这题的人吗?

播放视频:数学王子高斯的故事。

师:看了高斯的故事,有什么想说的吗?

师:是的,只要是深刻而持久的思考就会有发现。

四、总结。

师:最后回想一下,这节课你有哪些收获?

《加法交换律和结合律》教学设计【第二篇】

教学设计

教学内容:苏教版国标本四年级(上)教材p56-58页内容

教学目标:

1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交     换律和结合律。

2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解 决进行比较和分析,发现并概括出运算律。

3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。

教学重点:

使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。

教学难点:

使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。

课程资源的开发与利用:多媒体课件

教学过程:

一、 创设情境,初步感知

1、课前谈话(讲“朝三暮四”的故事)

听了这个故事,你想说些什么呢?(交换、不变)

2、情境引入

(1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)

(2)媒体出示情境图,从图中你知道了哪些数学信息?(生自由说)

(3)师:你能提出用加法计算的问题吗?

①参加跳绳的一共有多少人?

②参加活动的女生一共有多少人?

③跳绳的男生和踢毽子的女生一共有多少人

④参加活动的一共有多少人?

(2)我们先来解决第一个问题:参加跳绳的一共有多少人?

你们能马上口头列式并口算出结果吗?

指名回答,教师板书:28+17=45(人 ),追问:还有不同的算式吗?在学生回答后,教师完成板书:17+28=45(人)

观察比较这两个不同算式的计算结果。提问:你们发现了什么?

引导学生说出:28+17和17+28的结果都是45。

教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+1717+28)

(如果有学生说出这是加法交换律,就问你能说说什么是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就做出一般的结论,应该多举几个例子,多观察几组不同数目的算式,才能从中发现规律。)请学生根据这个等式完成第二个问题。下面请同学们汇报前置性作业第二题。

2、在列举中验证规律

象这样的等式你会写吗?试试看,越多越好。开始:汇报前置性作业第三题。

谁愿意来交流。

提问:你写了几个?说说看 。

根据学生回答,教师相机板书算式,

有没有比她多的 。

提问:指着板书,你们写的时候有没有什么规律?

学生能说到加数不变,交换位置,结果是一样的就行。

按照这样的规律,如果老师给你时间你还能写吗?

能写几个?无数个,写不完,用省略号表示(板书……)

3、在反思中概括规律

有这样规律的算式很多,写不完,谁能用一句话概括出这个规律。(四人一组讨论,然后交流。)用课件出示加法交换律的文字表术法。用语言表示加法交换律很长,又比较难记。你能用自己喜欢的方法把这个规律简明的表示出来吗?

需要合作的同学,可以四人小组合作。教师巡视搜集信息。

估计情况:  甲数+乙数=乙数+甲数,……

请同学起来交流:

如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎样表示这个规律呢?板书:a+b=b+a。

小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。

指出:我们过去学过用交换加数的位置再加一遍的方法来验算加法,就是用了加法交换律。

5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了?(加法交换律)

三、学习加法结合律。

1.在情境中感受规律

刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究“参加活动的一共有多少人?”看看我们有没有新的发现?

你们会列综合算式解决这个问题吗?再自备本上做,计算出结果。

交流:估计又学生列式28+17+23=68(人),你先算的是什么?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)

有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是什么?(女生人数)

如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。

观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23)

提问:它符合加法交换律吗?(不符合,加数的位置没变)

提问:加数的位置没变,那究竟加数的什么发生了变化呢?(相加的顺序不同)

引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。

2、在计算中验证规律。

再来看这样两组算式:算一算,下面的ο 里能填上等号吗?汇报前置性作业第四题。

(45+25)+13ο45+(25+13)

(36+18)+22ο36+(18+22)

如果有学生直接回答结果是一样的,教师添上= 请学生分组验算。

学生回答,教师板书:(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

那现在老师来写个算式(28+46)+27=你能按照上面三个等式的规律写出等号后面的吗?

你还能写出类似的等式吗?汇报前置性作业第五题。

指名几个学生回答,追问:你是怎么想的?

回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的 。

有这样规律的算式多吗?板书……

3、揭示加法结合律

观察黑板上的几个等式,你能发现等号两边的算式什么没变?什么变了吗?

小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,结果没变)

提问:你们组发现了什么规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?这里的a,表示?b表示?c表示?

板书:(a+b)+c=a+(b+c)

跟老师一起读一遍。

指出:我们过去学过的加法的某些口算方法就是应用了加法结合律。例如:

9+7想:

=9+(1+6)

=(9+1)+6

=10+6

=16

三:巩固内化,拓展应用。

1、课件出示想想做做第1题。

师:下面的加法等式各应用了什么运算律?先说给同桌听听。

师:第一题运用了加法的交换律,第二、三题应用了加法的结合律,我们再来看最后一道等式,先运用了加法的交换律,交换加数48和25的位置,再应用了加法的结合律。所以在一道加法算式中,有时我们也可以同时应用两种运算律。

2、课件出示想想做做第2题:

师:请同学们在课本上独立完成以上填空题。再说说你是怎样想的,为什么能这么填写。

师:第三、四两道算式 ,我们都可以有两种填法,一种是只用加法的结合律,一种是同时使用加法的交换律和结合律。

3、课件出示想想做做第4题。

师:下面我们进行一场比赛,老师这有4道题,每组做一道,比一比,哪一组做得最快。

(1)38+76+24                    (3)(88+45)+12

(2)38+(76+24)                  (4)45+(88+12)

师:对于这样的比赛结果,你有什么话想说?

比较每组中的两道题有什么联系?哪道题计算更简便些?

师:通过计算,我们发现,每组两道算式中的第二道算式相对来说比较快,因为我们在计算时第一步都可以凑整,计算的结果是100。从中我们可以发现应用了加法的运算律可以使计算简便。

4、完成想想做做第5题

师:哪两片树叶上的和是100?连一连。想一想,怎样的两个数相加和是100。

师:我们在找的时候,是先看个位上的数是几,然后再看哪一个数的个位上的数和它可以凑十,因为凑十是凑整的基础。例如75的个位上是5和25的个位上5可以凑十,然后再看两个数的十位上的数相加是否得九。7+2得9,再加上个位进上来的1,两个数相加的和就是100。在今后的计算中,同学们要做个有心人,在计算之前先观察一下,看看能否运用我们所学过的运算律,把能凑成整十、整百或整千的数先计算,这样可以使计算变得简便,有助于提高计算的速度和正确率。)

5、游戏:谈话:我们班有60位学生,那么老师就是班级中61号,老师想和班级中的9、19、29、39、49、59号交朋友。猜一猜老师为什么要和他们交朋友?(凑整,简便)

6、你想和班级中哪几号同学交朋友?

四、课堂总结

师:今天这节课,通过同学们的共同努力,我们一起认识了加法交换律和结合律,那么减法、乘法、除法有没有运算定律呢?今后我们再研究。不管学习什么内容,只要我们每一位同学都要相信自己能行,只要自己努力去学,就一定会学有所成。

板书设计:

加法的运算定律

加法交换律                                 加法结合律

28+17=45(人) 17+28=45(人)   (28+17)+23  28+(17+23)

28+17=17+28                 =45+23       =28+40

17+23=23+17                 =68(人)    =68(人)

学生汇报的算式                  (28+17)+23=28+(17+23

(45+25)+13=45+(25+13)

(36+18)+22=36+(18+22)

a+b=b+a                                (a+b)+c=a+(b+c)

《加法交换律和加法结合律》教案【第三篇】

一、说教材

(一)教材分析

“加法交换律和加法结合律”是国标版苏教版小学四年级上册第8 单元中的内容。本节内容安排了三个例题,分5课时进行教学,今天是其中的第一课时。加法交换律和加法结合律是运算中进行简便计算的两种必要的理论依据,他们是学生正确、合理、灵活地进行计算的思维素质,掌握的好坏将直接影响学生今后的简便计算和计算速度。这部分内容是在学生已经学过的加法计算和验算的基础上进一步探究,从感性上升到理性的内容。教材安排两个运算定律教学时,采用了不完全的归纳推理,教材从学生熟悉的实际问题的解答引入新课,列出两个不同的算式组成等式,再例举类似的等式进行分析、比较、找到共同点,抽象、概括出加法交换律和加法结合律。教材有意识地让学生运用已有的经验,经历运算律的发现过程,使学生在合作与交流中对运算律的认识由感性逐步发展到理性,合理的构建知识。“想想做做”先安排了一些基本练习,以填空、判断等形式巩固对加法运算的理解,接着通过题组对比和凑整等练习,为学习简便计算作适当渗透和铺垫。

(二)学情分析

(三)目标定位

根据学生的生活经验和知识背景及本课的知识特点,我预设如下教学目标:

(1)教学技能目标:通过利用学生身边的材料,组成贴近学生生活的教学内容,使学生理解并掌握加法交换律和加法结合律,并能用字母来表示交换律和结合律。

(2)过程方法目标:通过学生的自主观察、比较、分析、归纳,合作交流等学习活动,使学生经历探索加法交换律和结合律的过程,并经过对熟悉的实际问题的解决,进行比较和分析,发现并概括出运算律。

(3)情感、态度、价值观目标:通过学生积极参与规律的探索,发现和归纳,使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考问题的意识和习惯。

教学重点:使学生理解并掌握加法交换律和结合律,能用字母表示加法交换律和结合律。

教学难点:使学生经历探索加法交换律和结合律的过程,发现并概括出运算定律。

教具学具:为了便于操作、交流和展示、及时与学生互动,本课准备多媒体一套。

二、说教学程序

鉴于本课教学内容设定的目标及学生的认知规律和实际情况,预设如下四部分展开教学。

(一)探索加法交换律:

这部分分成4个环节进行

1、在情境中初步感知规律

课始从学校参加吴中区小学生运动会话题作为课堂信息,要求学生根据提供信息提出问题,从而导入新课,进行加法交换律的研究。

(设计意图:数学源于生活,生活处处有数学,用学生身边事情引入新知,很好地调动学生的学习积极性,在学生交流中提取有用的信息,为下而面的探究呈现素材,同时渗透思想品德教育。)

2、在例举中验证规律

(1)教师组织学生观察两个式子的特点,然后自己照样子仿写等式。

(2)运用自己字写出的等式,再次观察、比较有何相同点和不同点,从而初步感知其中的规律。

(设计意图:教师充分让学生自主活动,规律发现的过程。一方面组织学生写出类似的等式,帮助了学生积累感性材料,另一方面丰富了学生的表象,进一步感知了加法交换律。)

3、在反思中概括规律

(1)自己仿写式子,独立思考或小组讨论,用自己喜欢的形式表示出来。

(设计意图:通过学生独立思考,小组讨论,师生交流的多种形式,帮助学生用自己的语言来表示加法交换律,培养学生运用数学语言表述和概括的能力)

(2)用字母来表示加法交换律

(设计意图:学生在充分感知个性创造的基础上,构建了简单的数学模型,从用符号表示规律和用含有字母的式子表示规律,使学生体会到符号的简洁性,从而发展了学生的符号感。)

4、练习

(1) 填空、(2)判断、(3)验算

(设计意图:新课刚结束就配以填空、判断、验算多种形式的联系,既有利于概念的正确建立,同时也及时地巩固了新知。)

(二)探索加法结合律:

整个探索过程与“交换律”相似,唯一不同的是由于学生已有了探索前面例子的经验,在这里教师可以完全放手,稍加点拨便于引导学生完成探索过程。

1、在情境中感受规律。

以上面4、练习题为内容,让学生提问题过渡到下一环节,非常自然,

(1)学生一起解决“三个项目共得多少分?”

(2)交流学生各自列式,并让学生说清列式理由。

(3)选择两种不同列式,探索规律。

(设计意图:抓住加法交换律和加法结合律的内在联系,利用学生已有知识经验,把加法交换律的学习,迁移类推到加法结合律的学习中来。)

2、在计算中验证规律

(1)教师出示两组题目,让学生观察结果是否相等,为学生接下来题目,探究打下基础。

(2)教师写出左边算式,让学生写出右边算式(与左边相等),使学生在教师的引导下,逐步感知加法结合律。

(3)学生依据自己经验,开始写出这一类型的等式题,让学生在实践操作与锻炼,并体会认识加法结合律。

(设计意图:学生在教师的点拨和引导下,逐步从观察——感知——理解,充分符合学生的认知规律。

3、揭示加法结合律

(1)小组讨论,观察等式,左边和右边有什么变化,你发现了什么规律?

(2)按照这种规律,你还能写出这样的算式吗?

(3)用字母表示这样的规律。

(设计意图:这里主要通过学生讨论、交流、汇报等环节,正直组学生一个自主的空间。由于“运算律”属于理性的总结和概括,比较抽象,学生并不容易理解和掌握,因此多引导学生独立发现,思考、解答,有利于学生概括出相应的运算律。)

三、实践应用

(设计意图:我准备安排基础训练和拓展训练两个练习层次,通过层层深入,帮助学生进一步掌握本课知识,形成技能,并激发他们的创新思维,让学生感受解决问题的乐趣。

1、基础训练,分三个层次

(1)想想做做1:运用了加法的什么定律?

通过寓教于乐的游戏方法进行练习,女生代表加法交换律,男生代表加法结合律,让学生体会在每个等式中应用了什么运算定律。

(2)想想做做4,每个学生选一组题独立完成,使学生通过比较,知道应用加法运算律有时可以使两个加数的尾数凑成整十数,使计算简便。

(3)想想做做5

(设计意图:让学生意识到结合律往往要凑整,进行这题训练有利于提高学生的计算速度和正确率。为后头运用加法运算律进行简便运算打好基础。)

2、拓展练习,分二个层次

(1)在方框里填上适当的数。通过用图形式字母表示数来巩固加法运算定律,有利于学生抽象思维的形成。

(2)应用加法运算定律使计算简便:30+28+70+45+72。通过该题训练把一般的规律推广到更多的数字计算中,有利于知识的深化和综合运用知识能力的提高。

四、评价鼓励

(设计意图:及时评价总结,肯定学生的学习,以促进学生更加自觉主动地进行学习,使本课学习内容的理解提升到一个更高层面。)

五、教法、学法

以上是本人对本课教学过程的预设,在实际教学过程中将尽可能结合学生的生活经验,为学生创设生活和活动情景,新授和练习尽可能从贴近学生身边的素材撷取,激发学生学习兴趣,在学习过程中让学生经历动手实践,自主探究,合作交流的活动,使学生体会“做数学的乐趣。”

板书设计:

(设计意图:简明扼要的、纲领式的板书反映本课主要内容,体现本课知识的形成过程,知识性、系统性在整个板书中充分体现。)

小学数学《加法的交换律和结合律》教案设计【第四篇】

教学目标:

1、使学生经历探索加法交换律和结合律的过程,理解并掌握加法交换律和结合律,初步感知加法运算律的价值,发展应用意识。

2、使学生在学习用符号、字母表示自己发现的运算律的过程中,初步发展符号感,初步培养归纳、推理的能力,逐步提高抽象思维能力。

3、使学生在数学活动中获得成功的体验,进一步增强对数学学习的兴趣和信心,初步形成独立思考和探究问题的意识和习惯。

一、情境引入:

(1)同学们你们喜欢体育活动吧?谁来说说你最喜欢哪项体育活动?

(2)下面请同学们看屏幕(出示图),仔细观察这幅图,你从图上知道哪些信息?

(3)根据这些信息,你能提出哪些用加法计算的问题?

A、参加跳绳的有多少人?

B、参加活动的女生有多少人?

C、男生跳绳和女生踢毽子的有多少人?

D、参加活动的一共有多少人?

同学们提出的问题都非常好,下面我们先来解决第一个问题。

二、探索加法交换律:

(1)要求参加跳绳的有多少人,应该怎样列式计算?

指名回答,教师板书:28+17=45(人)

(2)还可怎么列式?板书:17+28=45(人)

(3)这两道算式都是求什么的人数?结果都是多少?再观察算式它们有什么相同点?不同在哪里?

(引导学生说出:加数相同,得数也一样,只不过是把加数的位置调换了一下)。

师:这两道算式的得数相同,都是求的跳绳的总人数。我们可以用怎样的方法连接这两道算式?(等号)板书:28+17=17+28

这是一个等式,读一读。

(4)你能照样子说出一个这样的等式吗?试试看。(指名学生回答说,教师把学生说的等式有序地板书在黑板上)。

(5)请同学们仔细观察这些等式,你发现每一组的两个算式都有什么共同的地方?有什么不同的地方(同桌交流)?

(6)从这些例子中,你可以发现什么规律?(让学生用自己的语言说一说)

(7)你能用自己喜欢的。方法把它们的规律表示出来吗?可以用符号、字母、文字等等表示,试试看。谁愿意上黑板写?(学生写,教师了解学生写的情况)。

(8)观察板演的等式,问:等式中的符号代表什么,如:○+□=□+○,教师就提问:□和○都代表什么,○+□=□+○表示什么呢?(代表任意的数)。

小结:

同学们想出来的方法可真多!两个数相加,交换加数的位置和不变这一规律叫做加法的交换律(板书:加法交换律),通常用字母表示:a+b=b+a

练习。

(1)想想做做第2题第1排的两题填好。

96+35=35+□204+□=57+204

指名回答,为什么?

(2)下面的等式符合加法交换律吗?为什么?

46+59=46+5990+10=5+95

[没有交换加数的位置;等号两边的加数不同。]

(3)同学们,想一想:过去我们学过的计算中,哪些地方应用过加法交换律?

下面一道题357+218,请同学们计算并用加法交换律进行验算。指名板演,集体订正。

同学们,刚才我们通过计算加法找出了一条规律(加法交换律),接下来我们继续研究加法的另一条规律。

三、探索加法结合律

1、同学们根据例题这幅图再算一算参加活动的一共有多少人会列式吗?

(1)指名回答,板书:28+17+23

第一步先求什么?为了看得更清楚,我们可给28+17添上括号,表示参加跳绳的总人数:(28+17)+23,再求什么?结果是多少?

(2)还是这个式子28+17+23(板书)

如果要先算参加活动的女生人数应该怎么办?教师添上括号:28+(17+23),添上括号后表示先求什么,再求什么?结果是多少?

(3)请同学们比较这两道算式:它们有什么相同点和不同点?

(4)这两道算式结果相同我们可把它写成怎样的等式?

板书:(28+17)+23=28+(17+23)

(5)算一算,下面的○里能填上等号吗?(教师当场板书)

(45+25)+13○45+(25+13)

(36+18)+22○36+(18+22)

3、归纳加法结合律:

(1)观察这三个等式,每组的两个算式有什么相同的地方?有什么不同的地方?你从这些等式中能发现怎样的规律?和你的同桌交流一下。

(2)你能用字母a、b、c代表这三个加数把上面的规律表示出来吗?(独立写一写)板书:(a+b)+c=a+(b+c)

a、b、c代表什么?(a+b)+c表示什么?a+(b+c)表示什么?

(3)小结:三个数连加,改变运算顺序,和不变。这就是加法结合律。(板书:加法结合律)

4、练习:在□里填上合适的数,想想做做2后两排。

(45+36)+64=45+(□+□)

560+(140+70)=(560+□)+□

全课总结:

这节课我们一起学习了加法的交换律和结合律,知道两个数相加,交换加数的位置和不变,还知道了三个数连加,改变运算顺序和不变。

四、巩固练习

1、想想做做:

下面的等式各运用了加法的什么运算律?

82+0=0+82

47+(30+8)=(47+30)+8

(84+68)+32=84+(68+32)

75+(48+25)=(75+28)+48

(以游戏的方式进行:女生代表加法交换律,男生代表加法结合律)

2、想想做做:

38+76+24(88+45)+12

38+(76+24)45+(88+12)

请每个同学选一组题独立完成。

反馈提问:为什么每组两道题的得数相同?哪种方法简便,为什么?

16 24082
");