教育工作者的二次根式教学设计实用【通用8篇】

网友 分享 时间:

【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“教育工作者的二次根式教学设计实用【通用8篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!

教育工作者的二次根式教学设计【第一篇】

课型:新授课。

教学目标:

2.能力目标:能熟练进行二次根式的加减运算,能通过二次根式的加减法运算解决实际问题。

3.情感态度:培养学生善于思考,一丝不苟的科学精神。

重难点分析:

重点:能熟练进行二次根式的加减运算。

难点:正确合并被开方数相同的二次根式,二次根式加减法的实际应用。

教学关键:通过复习旧知识,运用类比思想方法,达到温故知新的目的;运用创设问题激发学生求知欲;通过学生全面参与学习(分层次要求),达到每个学生在学习数学上有不同的发展。

运用教具:小黑板等。

教学过程:

问题与情景。

师生活动。

设计目的。

活动一:

情景引入,导学展示。

1.把下列二次根式化为最简二次根式上述两组二次根式,有什么特点?

这道题是旧知识的回顾,老师可以找同学直接回答。对于问题,老师要关注:学生是否能熟练得到正确答案。教师倾听学生的交流,指导学生探究。

问:什么样的二次根式能进行加减运算,运算到那一步为止。

由此也可以看到二次根式的加减只有通过找出被开方数相同的二次根式的途径,才能进行加减。

加强新旧知识的联系。通过观察,初步认识同类二次根式。

教育工作者的二次根式教学设计【第二篇】

(2)会进行简单的二次根式的除法运算;。

2学情分析。

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

3重点难点。

重点:二次根式的乘法法则与积的算术平方根的性质.。

难点:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

4教学过程。

4。1第一学时。

教学活动。

活动1导入复习提问,探究规律。

问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动学生回答。

设计意图让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则.。

2.观察思考,理解法则。

问题2教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

设计意图学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4对例题的运算你有什么看法?是如何进行的?

师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

设计意图让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。

活动2讲授观察思考,理解法则。

问题2教材第8页“探究”栏目,计算结果如何?有何规律?

师生活动学生回答,给出正确答案后,教师引导学生思考,并总结二次根式除法法则:。

问题3对比乘法法则里字母的取值范围,除法法则里字母的取值范围有何变化?

师生活动学生思考,回答。学生能说明根据分数的意义知道,分母不为零就可以了。

设计意图学生通过自主探究,采用类比的方法,得出二次根式的除法法则后,要明确字母的取值范围,以免在处理更为复杂的二次根式的运算时出现错误。

问题4对例题的运算你有什么看法?是如何进行的?

师生活动学生利用法则直接运算,一般根号下不含分母和开得尽方的因数。

设计意图让学生初步利用二次根式的性质、乘除法法则进行简单的运算。

问题5对比积的算术平方根的性质,商的算术平方根有没有类似性质?

师生活动学生类比地发现,商的算术平方根等于算术平方根的商,即。利用该性质可以进行二次根式的化简。

活动3活动例题示范,学会应用。

例1计算:(1);(2);(3)。

师生活动提问:你有几种方法去掉分母中的根号?去分母的依据分别是什么?

设计意图通过具体问题,让学生在实际运算中培养运算能力,训练运算技能,

问题5你能从例题的解答过程中,总结一下二次根式的运算结果有什么特征吗?

师生活动学生总结,师生共同补充、完善。要总结出:

(1)这些根式的被开方数都不含分母;

(2)被开方数中不含能开得尽方的因数或因式;

(3)分母中不含根号;

设计意图引导学生及时总结,提出最简二次根式的概念,要强调,在二次根式的运算中,一般要把最后结果化为最简二次根式。

问题6课件展示一组二次根式的计算、化简题。

设计意图让学生用总结出的结论进行二次根式的运算。

活动4练习巩固概念,学以致用。

例2教材第9页例7。

再提问章引言中的问题现在能解决了吗?

设计意图巩固性练习,同时培养学生应用二次根式的乘除运算法则解决实际问题的能力。

活动5测试目标检测设计。

1.在、、中,最简二次根式为。

设计意图考查对最简二次根式的概念的理解。

2.化简下列各式为最简二次根式:;。

设计意图复习二次根式的运算法则和运算性质。鼓励学生用不同方法进行计算。对于分母含二次根式的处理,要结合整式的乘法公式进行计算。

3.化简:(1);(2)。

设计意图综合运用二次根式的概念、性质和运算法则进行二次根式的运算。

活动6作业布置作业。

教科书第10页练习第1,2,3题;

教科书习题16。2第10,11题。

文档为doc格式。

教育工作者的二次根式教学设计【第三篇】

这节课的主要目标有二:。

2。体验到分母有理化最简方法是先局部化简;。

对于第一个目标期望学生能自行归纳出来最简二次根式一般形式就最好,对于第二个目标让学生自行体验到先化简再分母有理化的方法是最简方法.

今天上午结束这节课后,颇有感触.同学们讨论问题提的时候自始至终非常专注,而且很高效,有三个几乎从来不举手回答问题的同学能大胆走上讲台给大家讲解二次根式一道除法题的三种解法,他们的登台引起全班同学的欢呼.这是组员们的'努力所带来的结果.对于这节课有以下几点值得思考:。

问题的设置:。

这节课为了让同学掌握二次根式的定义,我直接抛出“什么是二次根式”。

这个问题让同学们去讨论,但后来效果并没有达到我想象的高度.其实后来想想这个问题的设置不能过于直接,应当列举诸多二次根式,让同学们判断哪些是二次根式,并讨论其理由,这样引导学生从感性过渡到理性.从而顺利掌握这个概念的本质.所以问题的设置不能死板,教条,要多样化,其目的是让学生能高效的掌握知识本身.

教学的规律:

1.循序渐进:这节课原本很希望学生能在一节课内就体会到先局部化简后在进行分母有理化的方法计算起来比较简洁.但这节课并没有实现这个目的,而且没有想到学生竟然给出多种方法.我想这一节课是否,对于第二个教学目标只能是一个循序渐进的过程,应当把这个问题延伸到下一节课,可以在下一节课中把学生的课后作业的解法对比,让学生去体会哪种方法更好,更简洁.不要急于在这一节课中去解决,这一节课只要能用自己的方法解决就行.

2.作业的处理:以前处理作业中总是对于做错的题目给一个红叉,并每一份作业评分.从现在开始,作业不再给红叉,用横线标注代替红叉,也不给评分.让孩子们关注的永远是知识本身,对于作业始终强调的是诚实的独立作业,认真的纠错这两点.

教育工作者的二次根式教学设计【第四篇】

2.掌握把二次根式化为最简二次根式的方法。

重点和难点。

过程设计。

出处

计算:

我们再看下面的问题:

简,得到。

从上面例子可以看出,如果把二次根式先进行化简,会对解决问题带来方便。

答:

1.被开方数的因数是整数或整式;

2.被开方数中不含能开得尽方的因数或因式。

满足上面两个条件的二次根式叫做最简二次根式。

(l)不是最简二次根式。因为a3=a2·a,而a2可以开方,即被开方数中有开得尽方的因式。

整数。

(3)是最简二次根式。因为被开方数的因式x2+y2开不尽方,而且是整式。

(4)是最简二次根式。因为被开方数的因式a-b开不尽方,而且是整式。

(5)是最简二次根式。因为被开方数的因式5x开不尽方,而且是整式。

(6)不是最简二次根式。因为被开方数中的因数8=22·2,含有开得尽的因数22.

指出:从(1),(2),(6)题可以看到如下两个结论。

1.在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;

2.在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式。

分析:把被开方数分解因式或因数,再利用积的算术平方根的性质。

分析:题(l)的被开方数是带分数,应把它变成假分数,然后将分母有理化,把原式化成最简二次根式。

题(2)及题(3)的被开方数是分式,先应用商的算术平方根的性质把原式表示为两个根式的商的形式,再把分母有理化,把原式化成最简二次根式。

通过例2、例3,请同学们总结出把二次根式化成最简二次根式的方法。

答:如果被开方数是分式或分数(包括小数)先利用商的算术平方根的性质,把它写成分式的形式,然后利用分母有理化化简。

如果被开方数是整式或整数,先把它分解因式或分解因数,然后把开得尽方的因式或因数开出来,从而将式子化简。

3.把下列各式化成最简二次根式:

答案:

(1)被开方数的因数是整数,因式是整式;

(2)被开方数中不含能开得尽方的因数或因式。

2.把一个式子化为最简二次根式的方法是:

(2)如果被开方数含有分母,应去掉分母的根号。

1.把下列各式化成最简二次根式:

2.把下列各式化成最简二次根式:

答案:

教育工作者的二次根式教学设计【第五篇】

(2)会用公式化简二次根式。

(1)学生能通过计算发现规律并对其进行一般化的推广,得出乘法法则的内容;

(2)学生能利用二次根式的乘法法则和积的算术平方根的性质,化简二次根式。

教学问题诊断分析。

本节课的学习中,学生在得出乘法法则和积的算术平方根的性质后,对于何时该选用何公式简化运算感到困难、运算习惯的养成与符号意识的养成、运算能力的形成紧密相关,由于该内容与以前学过的实数内容有较多的联系,例如,整式中的乘法公式在二次根式的运算中也成立,在教学中,要多从联系性上下力气、,培养学生良好的运算习惯。

在教学时,通过实例运算,对于将一个二次根式化为最简二次根式,一般有两种情况:(1)如果被开方数是分数或分式(包括小数),可以采用直接利用分式的性质,结合二次根式的性质进行化简(例见教科书例6解法1),也可以先写成算术平方根的商的形式,再利用分式的性质处理分母的根号(例见教科书例6解法2);(2)如果被开方数不含分母,可以先将它分解因数或分解因式,然后吧开得尽方的因数或因式开出来,从而将式子化简。

本节课的教学难点为:二次根式的性质及乘法法则的正确应用和二次根式的化简。

1、复习引入,探究新知。

问题1什么叫二次根式?二次根式有哪些性质?

师生活动学生回答。

设计意图乘法运算和二次根式的化简需要用到二次根式的性质。

问题2教材第6页“探究”栏目,计算结果如何?有何规律?

师生活动学生计算、思考并尝试归纳,引导学生用自己的语言描述乘法法则的内容。

2、观察比较,理解法则。

问题3简单的根式运算。

师生活动学生动手操作,教师检验。

问题4二次根式的乘除成立的条件是什么?等式反过来有什么价值?

师生活动学生回答,给出正确答案后,教师给出积的算术平方根的性质。

设计意图让学生运用法则进行简单的二次根式的乘法运算,以检验法则的掌握情况、乘法法则反过来就是积的算术平方根的性质,性质是为运算服务的,积的算术平方根的性质将积的算术平方根分解成几个因数或因式的算术平方根的积,利用整式的运算法则、乘法公式等可以简化二次根式,培养学生的运算能力。

3、例题示范,学会应用。

例1化简:(1)二次根式的乘除;(2)二次根式的乘除。

师生活动提问:你是怎么理解例(1)的?

师生合作回答上述问题、对于根式运算的最后结果,一般被开方数中有开得尽方的因数或因式,应依据二次根式的性质二次根式的乘除将其移出根号外、。

再提问:你能仿照第(1)题的解答,能自己解决(2)吗?

例2计算:(1)二次根式的乘除;(2)二次根式的乘除;(3)二次根式的乘除。

师生活动学生计算,教师检验。

(3)例(3)的运算是选学内容、让学有余力的学生学到“根号下为字母的二次根式”的运算、本题先利用积的算术平方根的性质,得到二次根式的乘除,然后利用二次根式的乘法法则,变成二次根式的乘除,由于二次根式的乘除可以判断二次根式的乘除,因此直接将x移出根号外、。

设计意图引导学生及时总结,强调利用运算律进行运算,利用乘法公式简化运算、让学生认识到,二次根式是一类特殊的实数,因此满足实数的运算律,关于整式运算的公式和方法也适用。

教材中虽然指明,如未特别说明,本章中所有的字母都表示正数,但仍应强调,看到根号就要注意被开方数的符号、可以根据二次根式的概念对字母的符号进行判断,在移出根号时正确处理符号问题。

4、巩固概念,学以致用。

练习:教科书第7页练习第1题、第10页习题16、2第1题。

设计意图巩固性练习,同时检验乘法法则的掌握情况。

5、归纳小结,反思提高。

师生共同回顾本节课所学内容,并请学生回答以下问题:

(1)你能说明二次根式的乘法法则是如何得出的吗?

(2)你能说明乘法法则逆用的意义吗?

(3)化简二次根式的基本步骤是怎样?一般对最后结果有何要求?

6、布置作业:教科书第7页第2、3题、习题16、2第1,6题。

1、下列各式中,一定能成立的是()。

设计意图考查二次根式的概念和性质,这是进行二次根式的乘法运算的基础。

2、化简二次根式的乘除______________________________。

设计意图二次根式是特殊的实数,实数的相关运算法则也适用于二次根式。

3、已知二次根式的乘除,化简二次根式二次根式的乘除的结果是()。

设计意图巩固二次根式的性质,利用积的算术平方根的性质正确化简二次根式。

教育工作者的二次根式教学设计【第六篇】

2、内容解析。

二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础。

基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式。

1、教学目标。

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(3)理解最简二次根式的概念、

2、目标解析。

(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算。

(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式。

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行、二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算、教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

1、复习提问,探究规律。

问题1二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动学生回答。

设计意图让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则。

教育工作者的二次根式教学设计【第七篇】

2.较熟练地掌握把一个式子化为最简二次根式的方法.

重点和难点。

重点:较熟练地把二次根式化为最简二次根式.

难点:把被开方数是多项式和分式的二次根式化为最简二次根式.

过程设计。

出处

请说出第(3),(4)题的解题过程.

答:第(3)题的被开方数是一个多项式,先把它分解因式,再运用积的算术平方根的性质,把根号中的平方式及平方数开出来,运算结果应化为最简二次根式.

理化.

请说出各题的特点和解题思路.

答:(1)题的被开方数及(2)题的被开方数的分子是多项式,应化成因式积的形式,可以先分解因式,再化简.

(3)题的被开方数的分母是两个数的平方差,先利用平方差公式把它化为乘积形式,再根据商的算术平方根和积的算术平方根的性质及分母有理化的方法,使运算结果为最简二次根式.

计算:

依据二次根式的乘除法的法则进行计算,最后要把计算结果化成最简二次根式.

1.选择题:

(7)下列化简中,正确的是[]。

(8)下列化简中,错误的是[]。

3.计算:

答案:

1.把一个式子化为最简二次根式时,如果被开方数是多项式,应把它化成积的形式,一般可考虑先分解因式,然后再化简.

2.如果一个式子的被开方数的分母是一个多项式,而这个多项式又不能分解因式(如课堂练习2(2)),在分母有理化时,把分子分母同乘以这个多项式.

3.二次根式的乘除法运算,运算结果一定要化为最简二次根式.

2.计算:

答案:

最简二次根式分二课时进行.设计中首先安排讨论二次根式的被开方数是单项式以及被开方数的分母是单项式的情况,然后再讨论被开方数是多项式和分母是多项式的情况.通过5个例题及课堂练习,最后达到使学生比较深刻地理解最简二次根式的概念,达到熟练地掌握把二次根式化为最简二次根式的目标.

教育工作者的二次根式教学设计【第八篇】

1、通过二次根式混合运算的学习,进一步了解二次根式运算法则,知道二次根式混合运算顺序,会进行二次根式的混合运算。

2、在进行二次根式混合运算的过程中,体会类比思想,逐步养成认真仔细的学习品质,进一步提高运算能力。

教学难点:类比整式运算准确快速的进行二次根式的混合运算。

教学过程:

(学生完成练习提纲,可以讨论,老师做必要的.板书准备,然后巡回指导,了解情况、)。

1、学生汇报解题过程,生说师写;。

2、发动其他学生评价补充完善;。

3、师画龙点睛强调:。

(1)二次根式混合运算的运算顺序跟有理数运算顺序一样,先乘方,再乘除,最后加减。

(2)二次根式混合运算与整式的运算有很多相似之处,因此可类比整式的运算进行二次根式的混合运算。

(先让学生独立完成,老师做必要的板书准备后巡回指导,了解情况;然后让有一定问题的学生汇报展示,发动学生评价完善,老师强调关键地方,总结思想方法。)。

本节课你有哪些收获?还有什么要提醒同学们注意的。(学生总结,百花齐放,老师不做限定,没说到的,老师补充。)。

将本文的word文档下载到电脑,方便收藏和打印。

22 2653539
");