小学数学教学设计案例一等奖热选【优质5篇】
【写作参考】一篇好的范文往往能让您的写作事半功倍,下面是由阿拉题库网友为您分享的“小学数学教学设计案例一等奖热选【优质5篇】”优质范例,供您写作参考之用,轻松写作,远离加班熬夜,希望以下内容对您有所帮助,喜欢就下载支持吧!
小学数学教学设计案例一等奖【第一篇】
本节课的内容是人民教育出版社出版的《义务教育课程标准实验教科书》一年级(上册)p32-p33“认识物体和图形”。这部分内容是小学几何图形学习的开端,也是本册后继学习“分类”的奠基内容。由于此内容比较切合学生的实际(直观形象,学生生活中常见),所以在设计理念上尽力去按新课标的理念去进行教学设计。在学习形式上采用了“小组合作学习”,以小组合作探究贯穿整节课。充分调动学生多种感官参与学习。在活动中学会合作,学会交流,学会发现和创造,学会归纳总结,尽力调动其积极性,培养学生想象力和创造力,发展学生的空间观念。在学习内容上尽量体现了数学与现实生活的联系。使学生觉得数学就在自己身边,利用数学本身的魅力去吸引学生。在评价方式上,尽量改变只有教师去评价学生的现象,给学生一个民主的地位。评价方式的改变,转变了学生头脑中“师严”的看法,老师也可以是我们中的一员。
案例正文。
教学内容:教科书p32-p33。
教学目的:
2、培养学生动手操作能力和观察能力,初步建立空间观念,发展学生的想象能力;。
3、通过学生活动,激发学习兴趣,培养学生合作、探究和想象、创新的意识。
教学重难点:初步认识长方体、正方体、圆柱和球的实物和图形,初步建立空间观念。
教具学具准备:课件;6盒各种形状的实物;图形卡片。
教学过程:
一、创设情境,导入新课。
师:小朋友,瞧!谁来了?
生:机器人!
师:快打开盒子,看看吧!
生:哇,这么多礼物!
师:喜欢吗?
生:喜欢!
师:但是,小叮铛要考考我们,他说:“你能把形状相同的物体在一起吗?”
师强调:把形状相同的物体放在一起,请小朋友合作分一分,在分的过程中,比一比,哪个小组合作得好一些。动手吧!
二、初步感知,形成表象,初步建立空间观念。
1、分物体。
(1)、小组活动(老师巡视并参与进去)。
(2)、汇报。
师:这个组小朋友已经分好了,而且从得非常端正。
问:哪个勇敢的小朋友来告诉大家,你们是怎样分的?
学生汇报:
我们组把肥皂、药盒、牛奶盒、小积木放在一起的;把魔方、骰子、化妆品盒子放在一起;我们把茶叶盒、易拉罐、小木棒放在一起;我们还把乒乓、皮球、玻璃珠放在一起。
师:这组小朋友分得真好,他们把相同的合在一起!其他小组和他们分得一样吗?
生:一样。
师:我们来看看小叮铛是怎样分的,(课件出示)——大家和他分得一样吗?
2、揭示概念(出示课件)。
小朋友们,为了能区别它们,谁来给它们取个好听又好记的名字呢?
师出示问:起个什么名字?
生:长方体。
师:为什么这么取名?(边问边板书)。
小学数学教学设计案例一等奖【第二篇】
分数的意义是个古老的课题,当学生学习分数的产生时,教材说:人们在进行测量和计算时,往往不能得到整数的结果。例如,用一个计量单位测量黑板的长度,连续量几次以后,剩下的不够一个计量单位,黑板的长度就不能用整数来表示;又例如,把一个苹果平均分给三个小朋友,每人分得的苹果个数也不能用整数表示。在这种情景下,能够把一个计量单位、一个苹果平均分成若干份,用它的一份或几份来表示。这样就产生了分数也就是说,不能用整数表示的,用分数表示;然而接下来的一个教学重点和难点是我们还能够把许多物体看作一个整体,比如一堆桃子,一批玩具,一个班级的学生等在教学实践的过程中,学生往往会把一个整体平均分得到的分数中份数与具体个数易混淆。所以,总有很多数学教师以此为题材,去商讨,去实践,期望从中找出能让学生理解最好的一种教学方法。
近来,在学习了几位数学教师上的数学国标本第六册p64p65册《认识分数》后,越来越感觉到数学教学中少不了追问,愿分享。
片段一:
出示:猴妈妈和四只小猴。
师:猴妈妈给四只小猴分一个西瓜,每只小猴可分得几分之几?
生:四分之一。
师:为什么?
生:因为把这个西瓜平均分成了四份,每只小猴可分得其中的一份。
师:猴妈妈还给四只小猴带来了他们最喜欢吃的桃子,每只小猴可分得几分之几?
生:四分之一。
师打开袋子,有8只桃子。
师:每只小猴可分得?
生:2个。
生:八分之二。
教师本来设计的目的十分明确,除了能够把一个物体平均分成几份外,也能够把一些物体平均分成几份,可是在最关键的地方教师没有进一步的追问,以至于前功尽弃。如果教师在学生说出每只小猴可分得这些桃子的四分之一时,教师进一步追问:为什么你连桃子的个数都不明白,就明白每只小猴可分得四分之一呢?学生必须会说:因为是平均分给四只小猴,这跟桃子的个数没有关系,所以是四分之一。如果学生能说到这一步的话,我相信即使之后有个别学生说八分之二,2个桃子等,也能在多数同学的正确引导下顺利得到统一意见。
片段二:
师:把6枝铅笔平均分给2人,每人几枝?
生:每人3枝。
师:把8枝铅笔平均分给2人,每人几枝?
生:每人4枝。
师:把一盒铅笔平均分给2人,每人得多少?
生:每人12。
师:为什么不回答几枝铅笔呢?
生:因为不明白盒里一共有几枝铅笔。
师:那么6枝铅笔,平均分成2份,还能够用什么数表示?
生:12。
师:8枝铅笔,平均分成2份呢?
生:也是12。
师:3枝能够用12表示,4枝也能够用12表示,为什么?
生:因为3枝是6枝的12,而4枝是8枝的12。
师;对,要弄清楚12是谁的12,整体不一样,12所对应的量,也就不一样。
假如把100枝铅笔平均分成2份,每一份也能够用12表示吗?
在那里,我们能够看到,学生顺着教师的引导,完全把知识内化。并且在整个过程中,学生兴趣盎然,在教师不经意的追问下,学生建立了数感,理解了分数的意义,也使每个学生获得了成功的体验。
追问有两种目的。第一种目的也是最基本的目的,是为了获得更多的信息。追问的第二种目的是查明真伪。在教学中,有很多学生似懂非懂,更有很多学生是不懂的,这时教师就要充分发挥引导者、组织者的作用,利用追问把那些似懂非懂的学生完全问明白,让那些不懂的学生听明白。甚至有人说过:知识本身并不重要,经过数学教学,让学生追问数学上的为什么,养成科学的思维习惯才是最重要的。
数学是理性的,教师是理性的引导者,不断追问着,学生理性的学习者,不断追寻着!
小学数学教学设计案例一等奖【第三篇】
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来,数学教案-列代数式。
2.初步培养学生观察、分析和抽象思维的能力。
3.通过运用多媒体手段的教学,激发学生学习数学的兴趣,增强学生自主学习的能力。
1.教学重点、难点。
列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
2.本节知识结构:
本小节是在前面代数式概念引出之后,具体讲述如何把实际问题中的数量关系用代数式表示出来。课文先进一步说明代数式的概念,然后通过由易到难的三组例子介绍列代数式的方法。
3.重点、难点分析:
列代数式实质是实现从基本数量关系的语言表述到代数式的一种转化。列代数式首先要弄清语句中各种数量的意义及其相互关系,然后把各种数量用适当的字母来表示,最后再把数及字母用适当的运算符号连接起来,从而列出代数式。
如:用代数式表示:比的2倍大2的数。
分析本题属于“…比…多(大)…或…比…少(小)”的类型,首先要抓住这几个关键词。然后从中找出谁是大数,谁是小数,谁是差。比的2倍大2的数换个方式叙述为所求的数比的2倍大2。大和比前边的量,即所求的数为大数,那么比和大之间量,即的2倍则为小数,大后边的量2即为差。所以本小题是已知小数和差求大数。因为大数=小数+差,所以所求的数为:2+2.
4.列代数式应注意的问题:
(1)要分清语言叙述中关键词语的意义,理清它们之间的数量关系。如要注意题中的“大”,“小”,“增加”,“减少”,“倍”,“倒数”,“几分之几”等词语与代数式中的加,减,乘,除的运算间的关系。
(2)弄清运算顺序和括号的使用。一般按“先读先写”的原则列代数式。
(3)数字与字母相乘时数字写在前面,乘号省略不写,字母与字母相乘时乘号省略不写。
(4)在代数式中出现除法时,用分数线表示。
5.教法建议:
列代数式是本章教学的一个难点,学生不容易掌握,这样老师在上课时,首先要让学生理解代数式的本质,弄清语句中各种数量的意义及其相互关系,然后设计一定数量的练习题,由易到难,螺旋式上升,使学生能够正确列出代数式。
列代数式。
1.使学生在了解代数式概念的基础上,能把简单的与数量有关的词语用代数式表示出来;
2.初步培养学生观察、分析和抽象思维的能力。
教学重点和难点。
重点:列代数式。
难点:弄清楚语句中各数量的意义及相互关系。
课堂教学过程设计。
一、从学生原有的认知结构提出问题。
1用代数式表示乙数:(投影)。
(1)乙数比x大5;(x+5)。
(2)乙数比x的2倍小3;(2x-3)。
(3)乙数比x的倒数小7;(-7)。
(4)乙数比x大16%((1+16%)x)。
(应用引导的方法启发学生解答本题)。
二、讲授新课。
例1用代数式表示乙数:
(1)乙数比甲数大5;(2)乙数比甲数的2倍小3;
(3)乙数比甲数的倒数小7;(4)乙数比甲数大16%。
解:设甲数为x,则乙数的代数式为。
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x。
(本题应由学生口答,教师板书完成)。
最后,教师需指出:第4小题的答案也可写成x+16%x。
例2用代数式表示:
(1)甲乙两数和的2倍;
(2)甲数的与乙数的的差;
(3)甲乙两数的平方和;
(4)甲乙两数的和与甲乙两数的差的积;
(5)乙甲两数之和与乙甲两数的差的积。
分析:本题应首先把甲乙两数具体设出来,然后依条件写出代数式。
解:设甲数为a,乙数为b,则。
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)。
(本题应由学生口答,教师板书完成)。
例3用代数式表示:
(1)被3整除得n的数;
(2)被5除商m余2的数。
分析本题时,可提出以下问题:
(1)被3整除得2的数是几?被3整除得3的数是几?被3整除得n的数如何表示?
(2)被5除商1余2的数是几?如何表示这个数?商2余2的数呢?商m余2的数呢?
解:(1)3n;(2)5m+2。
(这个例子直接为以后让学生用代数式表示任意一个偶数或奇数做准备)。
例4设字母a表示一个数,用代数式表示:
(1)这个数与5的和的3倍;(2)这个数与1的差的;
(3)这个数的5倍与7的和的一半;(4)这个数的平方与这个数的的和。
分析:启发学生,做分析练习如第1小题可分解为“a与5的和”与“和的3倍”,先将“a与5的和”例成代数式“a+5”再将“和的3倍”列成代数式“3(a+5)”
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a。
(通过本例的讲解,应使学生逐步掌握把较复杂的数量关系分解为几个基本的数量关系,培养学生分析问题和解决问题的能力)。
例5设教室里座位的行数是m,用代数式表示:
(1)教室里每行的座位数比座位的行数多6,教室里总共有多少个座位?
(2)教室里座位的行数是每行座位数的,教室里总共有多少个座位?
分析本题时,可提出如下问题:
(1)教室里有6行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(2)教室里有m行座位,如果每行都有7个座位,那么这个教室总共有多少个座位呢?
(3)通过上述问题的解答结果,你能找出其中的规律吗?(总座位数=每行的座位数×行数)。
解:(1)m(m+6)个;(2)(m)m个。
三、课堂练习。
1设甲数为x,乙数为y,用代数式表示:(投影)。
(1)甲数的2倍,与乙数的的和;(2)甲数的与乙数的3倍的差;
(3)甲乙两数之积与甲乙两数之和的差;(4)甲乙的差除以甲乙两数的积的商。
2用代数式表示:
(1)比a与b的和小3的数;(2)比a与b的差的一半大1的数;
(3)比a除以b的商的3倍大8的数;(4)比a除b的商的3倍大8的数。
3用代数式表示:
(1)与a-1的和是25的数;(2)与2b+1的积是9的数;
(3)与2x2的差是x的数;(4)除以(y+3)的商是y的数。
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)〕。
四、师生共同小结。
首先,请学生回答:
1怎样列代数式?2列代数式的关键是什么?
其次,教师在学生回答上述问题的基础上,指出:对于较复杂的数量关系,应按下述规律列代数式:
(1)列代数式,要以不改变原题叙述的数量关系为准(代数式的形式不唯一);
(2)要善于把较复杂的数量关系,分解成几个基本的数量关系;
五、作业。
1用代数式表示:
(1)体校里男生人数占学生总数的60%,女生人数是a,学生总数是多少?
2已知一个长方形的周长是24厘米,一边是a厘米,
求:(1)这个长方形另一边的长;(2)这个长方形的面积。
学法探究。
分析:先深入研究一下比较简单的情形,比如三个圆环接在一起的情形,看有没有规律。
当圆环为三个的时候,如图:
此时链长为,这个结论可以继续推广到四个环、五个环、…直至100个环,答案不难得到:
解:
=99a+b(cm)。
数学教案-列代数式。
小学数学教学设计案例一等奖【第四篇】
生1:我喜欢足球。
生2:篮球。
生3:乒乓球。
吴:由于受到场地的限制,我们只能在那里进行一次拍球比赛,你们看怎样样?
生:好。
(学生七嘴八舌商量开了,一分钟后,一个同学在黑板上写了“胜利队”。另一对也写了“吴正队”)。
吴:吴正是什么意思?
生:因为您的课讲得异常好,我们用您的名字,必须能赢。
吴:行行行。队名产生了,那咱们怎样比呢?
生:选出每个队最厉害的一位参加比赛。
吴:那你们选吧,再挑一个裁判,每队再请一个小朋友纪录。
预备,开始!20秒后,吴教师喊停,然后统计:“吴正队”:30,“胜利队”:29。
下头我宣布,本次比赛胜利者为“吴正队”。“胜利队”服不服气?
“胜利队”:不服气!
吴:为什么?
生:就一个人能代表我们吗?应当每队再选几个。
吴:我提议每队再选三个人,好吗?
(每队三人继续比赛,教师把每个人的拍球数写在黑板上。)。
吴:下头用最快的速度算出“胜利队”和“吴正队”的总数各是多少,报数。
生;118,124.
吴:此刻胜利者是“吴正队”,能够吗?
生:不能够。
(这时,吴教师走到胜利队同学面前。)。
吴:别急,虽然此刻咱们落后,但吴教师决定加入“胜利队”,欢迎吗?
胜利队:欢迎!
吴:此刻把吴教师拍的22个加进来,算一算一共多少个?
生;140个。
吴;下头我宣布,今日的胜利者是“胜利队”。
生:不一样意!
吴:为什么?
生;胜利队有5次拍球机会,我们仅有4次,不公平。
(学生开始思考,相互交流。)。
(最终有一个声音出现了:在人数不等的情景下,能够先求平均数。)。
吴:怎样求平均数呀?
生;就是用拍球的总数,除以拍球的人数。
点评:排球是孩子喜欢的游戏,吴教师把游戏引进课堂的时候,在许多环节上都进行了改造:让学生自拟队名、自定比赛规则,是要培养学生的参与意识,是为了激发学生内在的学习动力;教师选择加入,是为了加深学生对平均数意义的体会,从而激发学生对平均数知识学习的需要。实际上,几乎每个环节都自然的指向对平均数的理解。一个原生态的生活情境,是难以有如此明显而丰富的教学意义的。
将本文的word文档下载到电脑,方便收藏和打印。
小学数学教学设计案例一等奖【第五篇】
教学本课前,我布置学生搜集一些寓言故事来读一读,在第一个环节导入中让学生回忆过去的或者读过的寓言故事进行交流,拓宽知识面,激发学生求知的欲望。充分感知寓言形象是理解、揭示寓言的基础和前提,因此,在第二个环节初读课文时,我让学生充分地、自由地阅读课文,对自己没有读懂的地方做上记号并再全班提出让学生勇于发表自己的想法和看法。教学此环节时,我将学生质疑的问题进行归纳小结,最后落脚再三个问题上:南郭先生是怎样在乐队里混的?为什么能混过一次又一次而不被人发现呢?后来他为什么要偷偷地逃走呢?整篇课文的学习就围绕这三个问题展开。根据学习要求,再让学生充分、自由地阅读课文,并在有收获的基础上到小组中进行交流,然后抓住由这三个问题引出的重点句子和词语理解课文。如“每逢吹竽,他也鼓着腮帮,捂着竽眼儿,装腔作势,混在队伍里充数。”
为了让学生深刻领悟到南郭先生那不会装会的丑态,我用老师的朗读给学生创设了一个想象的空间,让学生充分大胆地发挥自己的现象,把自己脑海里浮现出的南郭显示描述出来,然后读出来,这样将文本语言转化为形象画面,课堂效果非常不错。再理解“讲排场”一词时,我让学生联系上下文,找出“排场”再这里是指三百人吹竽的大场面;再理解“滥”字时我又用了选择字义的方法让学生理解,这些不同形式地理解词语的方法都是教会学生学习的方法,让学生具有学习的能力,并且注意训练学生用概括、简练的语言叙述和回答问题,不要复述课文,体现了教学的文本性和工具性,也充分体现了“授人鱼,不如授人渔也。”