教师的数学教学与直线方程教学反思8篇

网友 分享 时间:

【参照】优秀的范文能大大的缩减您写作的时间,以下优秀范例“教师的数学教学与直线方程教学反思8篇”由阿拉漂亮的网友为您精心收集分享,供您参考写作之用,希望下面内容对您有所帮助,喜欢就复制下载吧!

教师的数学教学与直线方程教学反思【第一篇】

《等式与方程》教学反思这是开学第一天,我给孩子们上的新课内容。课堂气氛很活跃,孩子们回答问题也很积极。本节课的重点是方程的概念以及等式与方程的关系。“含有未知数的等式是方程”,这句话中包括两个条件,一个是“含有求知数”,一个是“等式”。因此,“含有未知数”与“等式”是方程意义的两个重要的内涵。在上课之前,我本来是想带天平演示以加深孩子们对等式的理解和掌握,后来为了课堂实行方便有效,我只带了挂图,孩子们也学的很积极。在这主要是让学生学会判断哪些是方程,哪些不是方程。断定一个式子是不是方程,要从两个条件入手,一是“含有求知数”二是“等式”,两个条件缺一不可。从而学生互相问,这个为什么不是,哪个为什么不是。含有求知数:5y不是方程,因为不是等式。5+8=13不是方程,因为没有求知数。所以方程既要是等式又要含有求知数。x+y=z也是方程,因为含有求知数,并且是等式。y=5也是方程,因为含有求知数,并且是等式。通过本节课的学习,孩子们基本上可以判断哪些是方程,哪些是等式,也分清了等式和方程之间的关系。

教师的数学教学与直线方程教学反思【第二篇】

1.教学计划中,原是考虑把探究1和探究2作为一个课时的,但是在学习了探究1后,发现我们的学生对应用题的解题分析,依然是个难点,很多同学分析题意不清,也有不少同学解方程需要花大量的时间,而这类“平均变化率”的问题联系生活又非常密切,是一元二次方程在生活中最典型的应用,考虑到学生的实际情况和教学内容的重要性,决定把探究2问题作为一个课时来探究。

2、在教法、学法上我采用“探索、归纳与合作交流”相结合的方法,采用尝试法、讨论法、先学后教引导式讲授法等方法培养学生自主学习,合作交流的学习习惯。让学生在自主探究合作交流中加深理解,分析实际问题中的数量关系,不但让学生“学会”还要让学生“会学”

3、以导学案的形式,创设由特殊性到一般性的实际问题为情境,让学生感受知识在生活中的应用,习题紧扣生活,难度不大,增加学生的自信及探究的积极性。通过学生讨论交流,归纳出一般的规律。

4、学生通过由特殊到一般的实际问题的探究后,及时让学生归纳,形成知识与方法。

5、鼓励学生自主学习,理解教材。采用学案问题设置的方式对问题进行分解,最后师生共同完成。由于是例题,所以注重板书格式。

6、学案的设置,具有层次性,以问题为主线,引导学生自主探究,小结归纳。有梯度的设置习题,让学生去挑战中考题,感受中考的难度,体会成功的喜悦。并且注重问题及考察需要,体现先学后教、合作探究,自主学习的课改精神。

7、在时间的安排上,教学环节(一)、(二)部分计划让学生展示后简单点评,但是考虑到学生的实际情况和学生知识的形成过程,不光是要结果,囫囵吞枣,所以做了详细的推导,用了不少的时间,这样导致了教学程序的不完整,挑战中考题没能在课堂上完成。环节(一)、(二)的习题设置有点多和重复,使得环节(五)中的综合练习没有在课堂中探究和展示,所以在习题的选择上还要多加精编,力求做到精编精炼。

8、生生交流活动少,学生大多数都是各自为阵,没有发挥小组的作用,在教学环节(三)的自主学习中,如果能发挥小组的带动作用,充分调动学生的能动性,真正发挥学生的主体地位,我想会更好一些,在引导学生讨论上做得不够,不能兼顾全体。

教师的数学教学与直线方程教学反思【第三篇】

新课程改革的核心目标是全面推进以培养创新精神和实践能力为重点的素质教育,培养21世纪所需的创新人才,这就要求在教学过程中既重视基础知识、基本技能的教育,又要重视创新精神和实践能力以及良好道德情操的培养。因此教学结构采用“以学生为主体—以教师为主导”的教学结构。通过对教学内容、学习活动等的设计,使学生在学习过程中既有很大的自主权,又能保证其学习不会发生质的偏离,能在适当的时候得到教师或伙伴的指导。学生处于这种开放式的学习环境是有程度限制的,这节课的教学过程中虽然在每一个小的学习环节都是采取的学生自主学习的方式。

但从整来教学的主导性太强,学习一直被老师牵着鼻子走。对一些思维速度的学习是可行的,而对于一些反应速度慢的学生来说跟着吃力,很快就失去学习的积极性。因此教师还要再放一把,给学生更广阔的思维空间。尤其是在环节的衔接过程,由学生思考下一步要做什么。学生是完全能够做到的,因为在复习时已把解决实际问题的一般过程复习了。

在教学过程中虽然以学生为主体,以自学为主。但是其积极主动性在某些同学来说还是不高的。对知识的获得的成就感也没有表现得那么明显。对于知识的广度和深度也没有举一反三的效果展示,更何况创新思维的培养。例如应在例题完成时,根据老师提出可以用设速度的方法为例,同学们还有什么方法?这样就起到了点睛的作用,为学生思维的开发提供了一个空间。只是重视了知识的巩固和运用,和解决问题的训练。虽说在总结时进行了思想教育,也没有见其明显的反馈。培养学生合作的小组学习不免有些形式化。因为在小组协作时都属于自我陈述,无合作解题的意向。

教师在教学过程中处于主导地位应关注学生分析,解决解决能力的培养;应关注学生交流协作表达能力的培养,应关注学生创新意识、能力的培养。从这些方面本节课教学过程中都表现的不足。还应提高在这方面的设计。还应提高驾驭课堂能力。

教学方法单一。几乎都是教师提问学生回答的形式。使整个课堂的也十分音调。学生的自主学习,探究学习,协作学习效果也不是很好。

教师的语言,在教学过程中教师的语言的地位是非常重要的,直接影响教学效果的成败。每一次出公开课都是一个锻炼学习的机会,从中能找到自己的一些缺点和不足。如在教学过程中由于语速过快而出现吐字不清的现象,口误出现频率也很高。语言表达能力还需要不断的锻炼。

培养学生的分析和解决问题能力,虽然不是一朝一夕的事情,但是必须重视每一次机会。特别提出的是王亮这名同学。这是一个比较特殊的学生,他的计算能力非常之强,速度非常之快,全班第一。记忆力也如此。而分析能力和解决问题能力就反过来了。举个例子,三角形的两个直角边是9厘米,三角形的面积是10平方厘米。如果设其中一个为x,那么另一个直角边可以表示为什么?这样的分析题都不能完成。他这种情况主要是没有掌握分析方法。因此每到一些简单的分析题时都要求他独立完成。在这节课上又出现了所问非所答的情况问“跳水运动员跳到最高点时的速度是多少?”而他回答的却是平均速度。显然他平时不认真分析老师说的话或应用题的题意。只有从平时,从基础抓起。不放过一次机会。

还有一点值得提出的是教学过程中一定及时纠正学生的错误。在这堂中有多处学生的错误没有得到老师的纠正。如:在计算过程中,最大数加上最小数的和除以2或可以说(最大数+最小数)/2。学生没有加括号,也没有说“的和”都是错误的,要及时加以纠正。

基本完成了基本知识和基本技能的学习目标,也对学生进行了情感教育,但是创新思维的培养没有体现出来。从始至终,学生都是有理有据的回答老师的提问。在总结分析时,教师只提到了有多种做法,学生可能是一头雾水。很可惜的失去了一次对学生创新思维培养的机会。

教学的主动权牢牢的抓在教师的手里。更要重视教学环节的灵活性。这样才有可能抓住学生的思维的火花,深入探究。推动学生思考的深度和广度,培养学生的创新能力。

教师的数学教学与直线方程教学反思【第四篇】

《等式与方程》这节课的教学内容较为简单,重点内容是认识方程和方程与等式之间的关系。我在教学这节课内容时通过例1的教学让学生自己总结出什么是等式:含有等号的式子叫等式。再区别等式与我们以前的算式,如8+2是算式,而8+2=10就是等式。

例2是让学生观察天平写出算式,再根据天平的指针是否指向0刻度线来判断左右两边的算式是否相等。接下来回答课本上的问题:“那些是等式?”学生很容易就能回答出右边的两个是等式。那左边的两个叫什么呢?学生们思考了一下,没有一个人能回答的出来,此时我告诉学生这叫不等式。当学生们听了“不等式”三个字之后都笑了,当时我还没有反应过来,当我再说到“不等式”时,我明白学生们为什么会笑了,他们以为我说的是“不懂事”,所以我立马把“不等式”三个字写到黑板上,原来闹了一个小笑话。

对于方程的定义:含有未知数的等式叫方程,学生们明白定义中的关键字是未知数和等式,明白了这点我再问例1中的等式50+50=100是方程吗?学生们说不是,因为没有未知数。方程与等式之间有什么关系?指名几位学生回答,一般都能明白,但语言表述的不是很清晰,最后葛晨曦和赵龙新总结说:方程肯定是等式,但等式不一定是方程,总结的很好。

“练一练”,让学生自己写一些方程,通过指名回答,发现学生们的方程一般都是5x=60、12+x=30等,考虑到学生是否以为未知数只能表示正数?所以我在黑板上写了这样一个等式让学生判断它是否是方程:2+x=0,学生们纷纷说不是,我说它符合方程的定义吗?学生若有所思的说符合,原来未知数还可以表示负数。我接着问未知数除了可以表示正数和负数还可以表示什么?分数和小数,于是我要求他们再写几个未知数能表示分数、小数和负数的方程。未知数我们可以用任何一个字母来表示,但我们习惯性用字母x来表示。等式x+y=20是方程吗?学生们基本上都能回答“是”,原因是因为有上面的思考,对于判断是否是方程,学生们会看方程的定义来判断。

下课后,有学生问我,这样的等式后面要写单位吗?这是我在上课时忽略的地方,含有未知数的等式也就是方程列出来之后,后面不需要带单位。

教师的数学教学与直线方程教学反思【第五篇】

在本章节中,学生将在平面直角坐标系中建立直线的代数方程,运用代数方法研究它们的几何性质。用代数方法研究几何思路清晰,可以充分运用各种公式解题,解题方法自然。但是,代数方法一个致命的弱点就是“运算量大,解题过程繁琐,结果容易出错”等等,无疑也影响了解题的质量及效率。新课程理念强调:公式教学,不仅要重视公式的应用,教师更要充分展示公式的背景,与学生一道经历公式的形成过程,同时在应用中巩固公式。在推导公式的过程中,要让学生充分体验推导中所体现的数学思想、方法,从中学会学习,乐于学习。

教学过程中学生对函数图像及其解析式和曲线及方程之间的联系与区别,概念上还是比较模糊的。初中讲直线,是将其视为一次函数,它的解析式是y=kx+b,图像是一条直线;高中讲直线,是将其视为一条平面曲线(更确切地讲是点的轨迹),它的方程是二元一次方程,而y=kx+b只是直线方程的一种形式。作为函数解析式的y=kx+b,x是自变量,y是因变量,只有当自变量x的值取定,因变量y的值才能确定,它们的地位是“不平等”的。而作为直线方程的y=kx+b,x和y是直线上动点的横坐标和纵坐标,它们的地位是平等的。函数的解析式一定可以转化为曲线的方程,但曲线的方程却不一定能够转化为函数的解析式。

对直线的方程的教学应该强调,直线的方程有5种形式,要用哪种形式是与已知条件相关的。并且在教学中一定要强调每种形式的适用范围,以防漏解。

直线的斜率也是学生容易忽略的地方,解题时容易不对斜率讨论而求解,漏掉斜率不存在的情况,在教学中要反复强调的.。

借助直线的方程来研究直线的位置关系也是学生第一次接触,数与形的结合,方程与图像的结合,是解析几何的基本研究方法,教学中应反复强调方程中的哪些量与图像中的哪些性质相吻合,学生可以在数与形之间灵活的转化,那么解析几何学起来就轻松多了。

关于“直线的倾斜角和斜率“的教学设计花了我很长的时间,设计了多个方案,想在”倾斜角“和”斜率“的概念形成方面给予同学更多的空间,也用几何画板做了几个课件,但觉得不是非常理想,以至于到了上课的时间仍旧没有满意的结果。但由于备课的时间还是非常的充分的,上课还是比较游刃有余的。但上是上了,感觉还是有点不爽。

其一,对”倾斜角“概念的形成过程的教学过程中,发现普通班和重点班在表达能力上的区别还是比较明显的,当问到”经过一个定点的直线有什么联系和区别时?”普通班所花的时间明显要比重点班多,但这也表明自己的问题设计还缺乏针对性。如果按照“平面上任意一点---做直线(3条以上)----说明区别和联系---加上直角坐标系----说明区别和联系”的顺序来设计问题,回答起来可能难度更低一点,同时也更加突出直角坐标系的作用。

其二,对通过的直线的斜率的求解教学,通过给出实际问题,引出疑问引起大家的思考的方式会更加自然一些。比如,一开始便推出“比较过点a(1,1),b(3,4)的直线和通过点a(1,1),c(3,)的直线”的斜率的大小”,然后得到直观的感受:直线的斜率和直线上任意两个点的坐标有关系。再推导本问题中的两条直线的斜率公式,最后得到一般的公式。

其三,”不是所有的直线都有斜率”以及斜率公式具备特定前提条件,在学习之处,要指出,但不要过分强调,更符合学生的认知规律,使学生的知识结构能够逐步完善,知识能力螺旋上升。

教师的数学教学与直线方程教学反思【第六篇】

本节课面对的学生是文科班位于中等层次的班级。文科班的学生对于数学普遍存在畏难情绪,所以在教学设计之初就立足于从简到难的思想,所以在教学过程中有了从特殊化到一般化的,再从一般化到特殊化这样两个环节并且设计的数据都比较简单易算,希望能够引起学生学习兴趣,并从中体会到数学学习中解决问题的思维过程。从课堂效果来看这个目的基本达到,学生课堂反映较好,参与积极,气氛热烈。

二.教学内容方面:

本节课主要解决的问题是掌握直线的点斜式方程,斜截式方程。直线是解析几何部分最基础的图形,其方程形式有点斜式,斜截式,两点式,截距式,一般式这五种形式。在这五种形式中出现最频繁,最基本的就是点斜式和斜截式。所以对这两种形式要做到能够熟练的根据条件选择合适的直线方程形式。在课堂中可以发现学生已经基本能够达到这一点。但是也存在几个方面的问题,如果直接提供一点一斜率,学生马上能够把直线方程的形式脱口而出。但是如果提供的是倾斜角,对倾斜角加以适当变化的话,部分学生还是存在一定的困难,有些是对斜率公式的不熟悉,有些是对三角函数公式的不熟悉造成的。说明部分学生对于三角函数部分的内容基础不扎实遗忘率较高,对于斜率和倾斜角的关系的理解还是存在疏漏之处,思维严密性需要提高。

三.教学改进:

第一需要继续强化基本概念的教学,深化学生对基本概念的理解。可以通过一些小练习,如填空,选择等加强学生逻辑思维能力的训练。如课堂练习中的变式还是较好的一种方式。以变式这种方式更易于学生发现问题的相同与不同之处,如果能够让学生自己加以适当的总结,老师再加点评,那效果会更好。不过这对课堂时间的控制要求较高,所以采用何种方式展开需要更多的思考。

第二需要设置梯度,逐步提高难度。由于本节课面对的对象,而且这是直线方程的第一节课,所以设置的内容还是简单易懂的,但是以后的课程中难度要求还是需要逐步提高综合应用能力,这需要在以后的课程中逐步贯彻。

教师的数学教学与直线方程教学反思【第七篇】

本课所体现的教育理念是要让学生在广泛的探究时空中,在民主平等、轻松愉悦的氛围里,应用已有知识经验,通过观察比较、质疑问难、释疑解惑、合作交流,理解并掌握方程的意义,知道等式和方程之间的关系,并能进行辨析。使学生学会用方程表示具体甚或情境中的等量关系,进一步感受数学与生活之间的密切联系。同时提高学生的观察能力、分析能力和解决实际问题的能力。初步建立分类的思想。

这节课改变了传统的教法,从天平的平衡与不平衡引出等式,通过教师的引导,让学生去动脑筋思考,展示了学习的过程。学习的整个过程符合儿童认知发展的一般规律。从生活实际引进学生已有生活的经验,很自然地想到两种不同情况,并用式子表示,引出等式;其中有含有未知数、不含未知数的两种形式。体现“生活中有数学,数学可以展现生活”这一大众数学观,也体现了科学的本质是“来源于生活,运用于生活”。通过观察,探寻式子特点,再把这些式子进行两次分类,在分类中得出方程的意义,也看出了构成方程的两个条件,反映了认识事物从具体到抽象的一般过程。其中的观察、比较、分类,也是人类学习的基本手段、方法。

信任学生,充分发挥主体积极性。在教学过程中,放手让学生把各自的想法用式子表示出来,展示学生的学习成果;学习小组互相交流、检查,体现了学习的自主性;学习的过程、结果也由学生自己来体验、评价,大大激发了学生学习的积极性。

创新是永恒的,数学教学需要不断的革新,这样的课堂教学体现了当前小学数学课程改革和课堂教学改革的精神,注重从学生的生活实际出发引导学生大量收集反映现实生活的“式子”,初步建立式子的观念;再组织学生对这些式子进行比较、分类,逐步了解等式的意义;最后在对等式的去粗取精,对选定的素材通过观察、比较,明确方程的所有本质属性。本课注重了概念教学的一般要求,对方程这一概念的本质属性的探索全部由学生主动进行,注重呈现形式,从细微之处显示出教学的风格。

教师的数学教学与直线方程教学反思【第八篇】

直线方程的教学是在学习了直线的倾斜角和斜率公式之后推导引入直线的点斜式方程,进一步延伸出其他形式的直线方程和相互转化,为下面直线方程的应用如中点公式、距离公式、直线和圆的位置关系等打下良好的基础。

以下是在课堂教学中的几点体会和建议:

(一)初步培养了学生平面解析几何的思想和一般方法。

在初中,学生熟知一次函数y=kx+b(也可以看成是二次方程)的图象是一条直线,但反过来任意画一条,要同学们写出方程表达式,学生刚开始会无从下手,从而激发学生学习的兴趣。随着教学的展开,让学生逐步形成平面解析几何的方法,如建立坐标啊,设点啊,建立关系式啊,得出方程啊等等,初步培养学生的平面解析几何思维,为后面学习圆、椭圆和相关圆锥曲线打下良好的基础。

(二)在教学中贯彻“精讲多练”的教学改革探索。

我们都知道,对于职中的学生,基础差,底子薄,理解能力差,动手能力差,要想让学生学有所得,最好的办法就是精讲多练,提高学生的动手能力。因此在教学中,我们通常是由练习引入,简单讲讲,一例一练,配以一定的巩固提高题,最后还有配套作业,做到每个内容经过三轮的练习,让学生能够很容易的掌握。

(三)注意数形结合的教学。

解析几何的特点就是形数结合,而形数结合的思想是一种重要的数学思想,是教学大纲中要求学生学习的内容之一,所以在教学中要注意这种数学思想的教学。每一种直线方程的讲解都进行画图演示,让学生对每一种直线方程所需的'条件根深蒂固,如点斜式一定要点和斜率;斜截式一定要斜率和在y轴上的截距;截距式一定要两个坐标轴上的截距等等。并在直线方程的相互转化过程中也配以图形(请参考一般方程的课件)。

(四)注重直线方程的承前启后的作用。

教材承接了初中函数的图像之后,并作为研究曲线(圆、圆锥曲线)之前,以之来介绍平面解析几何的思想和一般方法,可见本节内容所处的重要地位,学好直线对以后的学习尤为重要。事实上,教材在研究了直线的方程和讨论了直线的几何性质后,紧接着就以直线方程为基础,进一步讨论曲线与方程的一般概念。

22 2828549
");