数学建模论文优推5篇

网友 分享 时间:

【序言】由阿拉题库最美丽的网友为您整理分享的“数学建模论文优推5篇”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

数学建模论文模板【第一篇】

大学数学包含微积分、线性代数、概率论与数理统计三门基础课程,这是高校经管类专业必修课程;更高级的数学课程还有运筹学、最优化理论,这些在中高级西方经济学中会经常用到。现实经济中存在很多问题都与数学紧密相关,都需要严谨的数学方法去解决,因此数学的学习是非常重要的。数学的学习,一方面能够培养学生的逻辑思维能力和空间想象能力,另一方面,数学的系统学习为经管专业后续课程(如西方经济学、计量经济学)提供了数学分析工具和计算方法。除了需要掌握数学分析和计算能力,经管专业应该更加注重培养学生的经济直觉和数学建模能力,让学生形象地理解数学定义和经济现象。虽然现在高校中经管类专业的数学教育过程融合了一些本专业的知识,但仍存在很多问题。笔者根据自己以及同行的教学经验,提出相应的改革措施以更好挖掘数学方法在经管中的有效作用。

一、经管类专业大学数学的特点

每个专业都有其独特的学习内容和方法。经管专业作为我国培养经济工作人员的特殊专业而成为国家重视、社会关注的专业。大学数学是社会科学和自然科学的基础,因此其在经济学理论中有着举足轻重的地位,数学可以为经济学中的很多问题提供思想和方法的支持。经管类专业数学的学习有如下特点。

1.经管专业的数学和经济学问题紧密相关。

经管专业要学习和解决经济相关内容,因此,经济类的数学教育要围绕着经济问题展开讨论,例如简单的经济问题有价格函数、需求函数、供给函数以及边际成本的分析,复杂一些的还有竞争性市场分析、垄断竞争和寡头垄断、博弈论和竞争策略、生产和交换的帕累托最优条件、信息不对称的市场,这些都需要用微积分的知识理解。把数学知识融入经济学,能够给解决经济学问题提供有效的技术支持。例如通过画出各种函数的图像,可以让学生更直观地了解价格、需求、供给的关系,可以更形象地看出它们之间的依赖关系。微积分中导数的学习应用到经济中为经济利益最大化提供了分析方法,例如需求理论可以转化成一个约束最优化问题,用拉格朗日乘数法进行求导计算,从而求出目标函数的最优值。另外,消费者剩余可以转化成定积分进行计算,人口阻滞增长模型可以用微分方程解释。

2.经管专业的数学学习注重经济直觉培养。

数学的学习可以训练和培养学生的逻辑思维能力,一般自然科学专业的数学学习注重于各种问题的来源以及证明。然而经管专业的数学主要为学生培养经济直觉并引导其进行有效计算,因此需要着重培养经管专业学生的数学计算能力。例如,在讲最值问题时可以让学生计算利润最大化的例子,利用微积分的知识计算出最大利润,这样既培养了学生的数学计算能力,又让学生理解了经济学概念。

二、经管类专业学习数学的过程中出现的问题

近年来,大学数学教育改革取得了一定效果,但是还存在很多问题。例如,有些学校不重视大学数学课程的学习,只注重专业课的学习。实际上数学学习的效果直接影响后续专业课的学习。还有部分院校教师教授经管课程时还停留在纯粹的数学理论上,虽然有的高校在高等数学教育中很大程度上融入了经济中的各类问题,但是由于高校教师都是数学专业出身,对经济类专业中的数学问题不甚了解,因此不能很好地解释相应的经济现象。另外,经管类招生一般同时招收了文科和理科生,从而学生的数学基础大相径庭,使得大学数学的教学存在一定困难。还有大学的学习任务重而老师授课时间有限,对于基础较差的学生,教师又不能非常详细地复习学生高中学过的知识,因而造成基础好的学生学起来轻松自如,学习效果较好,而基础差的学生学起来吃力,学习的效果也不尽如人意。

三、改革措施

培养学生经济直觉和数学建模能力

1.优化教学内容,根据专业特点选取相关实例来理解数学定义。

由于大学课程任务重,使得大学数学的学习课时相对变少,这就要求教师上课时要优化教学内容,适当删减纯数学理论的学习,在不影响后续课程的条件下,可以删除一些难度较大的纯理论性的内容,扩充一些和经管专业知识相关的内容。教师在上课时,要根据学生所学专业的特点,选取相关概念、相关实例,让学生更直观、更形象地学习数学知识,从而培养学生的经济直觉。例如,在学习微积分中导数的相关概念时,可选取有关成本函数、收入函数和利润函数的例题来求边际成本、边际收入和边际利润,从而让学生了解导数在本专业中的应用。在讲线性代数的矩阵概念时,可以给学生讲解经济学中投入产出模型。在讲股票投资的时候可以和概率论联系在一起,通过概率论的理论解释可以说明股票投资是具有随机性的,在股票市场没有绝对的赢家。在讲拉格朗日方法的时候可以引入影子价格的概念,从而理解影子价格的经济现象解释。只有让数学和学生所学专业挂钩,才能让学生轻松地学习数学定义,并了解一些经济学专业名词,达到让数学更好的为专业知识服务的目的。

2. 教学过程中要注重学生数学建模思想的培养。

经管类专业学生学习数学课程,一方面是为了解决专业内容中的问题,另一方面是还需要培养学生的逻辑思维能力和分析问题、解决问题的能力。因此,在讲授经济中的数学问题时,还要教会学生根据经济问题建立相应的数学模型。建模就是把经济学中一些现象或者问题用数学语言表述出来,然后进行模型求解,从而解释经济现象或者解决相应的经济问题。通过建立数学模型把经管专业中的经济学问题转化成数学问题,然后通过求解数学模型得出相应答案,从而解决该经济问题。因此,建立数学模型非常重要。例如求解最大利润问题、最小成本问题可以引导学生通过建立利润和成本函数,从而转化成一个最优化问题,并且在求解该问题时,需要用到导数(偏导数)的知识,这样既加深了学生对数学知识的理解,又体会到数学知识在经济学中的重要作用。在学习统计学的F检验和T检验时,可以引导学生建立计量经济学中要学习的回归模型,一开始可以引入一元线性回归模型,再过渡到二元线性回归模型,对于二元线性回归模型可以形象地借助二维图像进行说明,最后分析多元线性回归模型,特别地,还可以指出,在回归模型的建立中本质上用到了微积分中学习的最小二乘法。在线性回归模型学习完以后,还要进一步学习更加复杂的非线性模型,以便让学生掌握由简单到复杂的数学建模过程。总之,在整个数学的学习过程中,要经常让学习练习如何正确地建立模型,以提高学生分析问题和解决问题的能力。

3.教师要不断了解经管专业知识,以适应学生学习的需要。

教授经管类专业的任课教师要不断阅读经管类专业相关书籍,充分了解经管类专业知识要用到的数学知识和数学思想,把经济学和数学融会贯通。只有这样,教师在上课时才能做到有的放矢,才能时刻围绕学生所学所需的专业知识来讲授数学知识,真正做到数学为专业服务。整个教学过程中,教师要对经管类专业知识有深入的理解,才能结合数学给学生解释清楚经济学概念和经济学原理,才不至于让所学内容与专业知识脱轨。教师要了解经济学的前沿进展,从而可以在上课过程中引入生动而形象的经济实例,做到学教结合,真正成为学生学习的引路人。

4.教学方法要多元化,以提高学生学习兴趣。

目前,经济数学的教学依然是传统的教学模式,即教师讲授、学生被动接受的模式。这种教学方法严重挫伤了学生学习的积极性和主动性。因此,教学方法的选择至关重要。这就要求教师要根据学生的特点,做到因材施教。讲课过程中也不能一味罗列一些数学定义和数学定理,而要注重与学生的互动,以提高学生学习的积极性。教师在上课过程中还要注重学生兴趣的培养,可以讲一些获得诺贝尔奖的经济学家的事迹,很多获得诺贝尔奖的经济学家都有很好的数学基础,在这些基础上他们进一步在学习的过程中加强了自己的经济直觉培养,最后取得学术的成功。通过经济学家的故事可以启发引导学生去接触最新的经济学理念,从而逐步探索新知识,然后启发学生学习数学和经济学的兴趣。同时要让学生多独立思考,布置一些有趣的课后习题,特别是可布置一些结合生活中的经济实例的数学习题,通过解答这些习题,学生不但可以学习数学知识,还可以让学生体会数学和经济学的生动结合,最后引导学生思考一些更加复杂的经济问题并用数学知识解决问题。只有老师生动讲解、引导和学生快乐、轻松学习的完美结合,才能激发学生的学习兴趣,起到事半功倍的学习效果。

四、结语

在高校数学教学中,应根据经管专业特点采取有效的教学方法教授数学知识,特别要注意学生经济直觉的培养,这就要求在教学过程中可以适当减少数学的严格证明,注重数学概念在经济学中的应用,从而让学生形象生动的理解数学知识在经济学中的重要作用。另外,教学过程中还需要培养学生的数学建模能力,并培养学生学习数学的兴趣,引导学生将所学数学知识应用到实际工作中,真正做到学有所用,从而培养优秀的经济类人才。

数学建模论文模板【第二篇】

本文从数学建模竞赛的动员组织情况、具体竞赛过程、获奖情况和今后的工作方向四个方面对我校数学建模竞赛活动进行了一些探索与实践。

教育国的核心是培养创新型人才。全国大学生数学建模竞赛是高校中参加人数最多、影响最广泛的学科竞赛之一,此项赛事由教育部高教司和中国工业与应用数学学会联合主办,迄今已举办21届,它对创新型人才的培养起到了不可估量的作用,未来也将日益显现它这方面的作用。长春理工大学从1996年开始参赛,成绩斐然,已累计获得国家级奖40余项,年均3项,20xx年我校共有51队153人参加全国赛,是吉林省除吉林大学外参赛队数最多的高校。其中9队获得国家一等奖,11队获得省一等奖,21队获省二等奖,8队获省三等奖,获奖率位居吉林省参赛高校前列。这主要归益于以下几方面:

一、赛前的动员及组织情况

赛前周密的宣传组织工作是本次大赛取得成功关键因素之一。我校一直把组织数模竞赛作为一项重要的教学活动纳入了全年工作日程,专门成立了数学建模竞赛领导小组,协调、督促、组织数学建模竞赛各项准备活动。通过海报、课堂、网站等多种形式宣传开展数学建模活动,鼓励各学院学生踊跃报名。

二、竞赛具体过程管理和实施情况

由专人统筹负责竞赛工作。从每年四、五月份开始采取校级、省级竞赛层层选拔的制度,把最优秀、最渴望参赛、最有能力的队员吸纳进来组成国家赛参赛队伍。对于国赛队员将认真组织赛前培训和辅导工作。

三、本年度竞赛获奖情况分析

今年我校共有51个队参加了全国大学生数学建模竞赛,获得国家奖9项,省级奖40项,获奖率几近100%。

四、竞赛过程中存在的问题及拟解决的措施

1.竞赛过程中存在的主要问题还是数学软件使用和写作两方面,在今后的培训和其他级竞赛中应加强这两方面的训练。另外宣传力度也有待加强。

2.今年全国赛我校51队中有35支代表队选择了A题,此题是交通占道问题对城市交通能力的影响问题,实质是利用数学方法建立模型,需要学生有较好的微积分、常微分方程、运筹学等课程基础,正是由于我校平时对大一大二的数学基础课的精心讲解和严格要求才使得我校学生有信心也有能力作出此题并取得了如此好的成绩,今后我们将继续加强数学基础科的教学工作,同时注意在教学中渗透数学建模的'思想、方法,培养学生参加建模的兴趣。并希望以数学建模工作为平台,通过多种形式大力开展数学建模教学与研究活动,以赛促学、以赛促教,以竞赛推动教学研究,以教学研究提高竞赛质量。B题选择队数相对较少,原因主要是该题是关于碎纸文字的拼接复原模型,需要队员熟悉算法,精于编程,大多数同学不敢碰此题原因就是编程能力过弱。

3.国家赛获奖结果反映出理学院、计算机科学与技术学院、光电工程学院、电子信息工程学院的学生获奖人数占到98%,创新实验班参赛人数并不多,仅占总人数的33%,特别是计算机科学与技术学院的创新实验班仅有8人参加,不及总人数的6%。

五、对学校的建议和意见

1.认真组织各级数学建模竞赛,建议提前到3月中旬组织校数学建模竞赛,改进选拔方式,通过评审、教师推荐、答辩精选国赛参赛队员,加大对数学软件、算法的培训;5月下旬到7月中旬,利用周六对选拔出的学生进行实战培训,建议全体队员模拟实战,完成3-4道往年的竞赛题目,并提交论文,指定专门教师负责指导。

2.进一步宣传发动,动员更多的学生参加数学建模竞赛,特别是加大对计算机学院的宣传力度,争取更多的计算机科学与技术学院,特别是动员计算机科学与技术学院创新实验班的同学参赛。

3.继续举办大学生数学建模培训,切磋技艺,交流经验,提高水平。组织教师精讲获国家奖的。同时每年选派2至3名指导教师参加建模交流会议及理论学习,也让更多教师参与数学建模类教改科研项目,将数学建模作为一件可持续发展的项目开展。

4.抓好数学建模基地建设,定期做讲座和研讨,打造一支高素质建模指导教师队伍。

数学建模竞赛是一项长期、可持续、与实践结合密切、应用前景极好的学科竞赛,需要我们不断探索和实践,不断摸索出一套适合我校竞赛组织活动的规范化体系。

数学建模论文模板【第三篇】

论文关键词数学建模创新能力创新思维教学模式

论文摘要阐述了数学建模对培养学生创新能力的意义,讨论了如何在数学建模的教学中培养学生的创新思维,探讨了数学建模的教学模式。

1引言

当今世界,创新取代了传统的比较优势,已经无可替代地成为国家竞争战略的基础。

因此,加强创新精神和创新能力的培养,已是世界各国教育改革的共同趋势,也是我国实现“科教兴国”战略的基本要求,创新教育已经成为高等教育的核心,多年来的教育实践证明,数学建模的教学与竞赛活动在高等学校的创新教育中的地位和意义已是举足轻重。

一年一度的全国大学生数学建模竞赛活动是由国家教育部高教司直接组织领导,面向全国高校,规模最大,参与院校最多,涉及面最广的一项科技竞赛活动。其宗旨是“创新意识,团队精神;重在参与,公平竞争”。自1992年举办第一届竞赛以来,参赛队数以平均每年近30%的速度增加,2006年已达到864所院校9985个参赛队的规模。正是由于数学建模竞赛活动的深入开展,它积极地推动了大学数学教学改革的开展,并已取得了显著的成果。

2数学建模对培养学生创新能力的意义

高校作为人才培养的基地,围绕加快培养创新型人才这个主题,积极探索教学改革之路,是广大教育工作者面临的一项重要任务。正是在这种形势下,数学建模与数学建模竞赛,这个我国教育史上新生事物的出现,受到了各级教育管理部门的关心和重视,也得到了科技界和教育界的普遍关注。这主要是数学建模的教学和竞赛活动有利于人才的培养,特别是人才的综合能力、创新意识、科研素质的培养。也正因为如此,数学建模活动的实际效果正在不断的显现出来,“数学建模的人才”和“数学建模的能力”正在实际工作中发挥着积极的作用。

数学建模本身就是一个创造性的思维过程。数学建模的教学内容、教学方法以及数学建模竞赛培训都是围绕创新能力的培养这一核心主题进行的,其内容取材于实际,方法结合于实际,结果应用于实际。数学建模的教学和竞赛培训,为学生的探索性学习和研究性学习搭建了平台。数学建模的教学和竞赛,注重培养学生敏锐的观察力、科学的思维力和丰富的想象力,既要求学生具有丰富的知识,又要求学生具有较强的实践操作能力;既有智力和能力要求,又有良好的个性心理品质要求;既要求敢于竞争,又要求善于合作。数学建模真正体现了开发学生潜能、培养学生优秀心理品质以及积极探索态度的良好结合。在数学建模的教学与竞赛中,特别注重发挥学生的主动性、积极性、创造性、耐挫折性,特别是提倡探索精神、创造精神、批判精神、团队协作精神等。知识创新、方法创新、结果创新、应用创新无不在数学建模的过程中得到体现。实践正在证明,数学建模的教学与竞赛活动是培养大学生创新思维和创新能力的一种极其重要的方法和途径。

3在数学建模的教学中培养学生的创新思维

创新型人才是指具有较强的创新精神、创造意识和创新能力,并善于将创造能力化为创造性成果和产品的人才。尽管创新精神、创造意识和创新能力的培养不是一个学科或一门课程的教学所能完成的,但大量的中外教育实践充分证明,数学教育在创新型人才的培养中具有其他学科不可替代的优势和作用。因为数学中的理论和方法是人们从量的侧面研究现实世界所得到的客观规律,是研究各种科学技术不可缺少的语言和工具。

而数学建模的过程则恰好是将数学中的理论和方法又重新应用于解决现实问题,即是理论来源于实践又要服务于实践的一个完美体现。这一过程高度反映了人的创新精神、创造意识和创新能力。

数学本身包含着许多重要的思想方法,比如由特殊到一般的思想、从有限到无限的思想、归纳类比的思想、倒推逆向分析思维、试探思想等,其本质都是创造性思维方法。我们在数学建模的教学过程中不刻意地去追求运算技巧和方法,而将重点放在数学思想方法的传授上,运用对数学思想方法的体会去启迪学生的创新思维,激发学生的创新欲望。

数学上的归纳和类比思维是一种非常典型的创新思维,著名的数学家拉普拉斯说过“在数学里,发现真理的主要工具和手段是归纳和类比”。而大多数数学模型的建立、修改或改进,很多时侯都是依靠这种归纳与类比思维。在寻找模型求解的算法时,也常常用类比思维,利用相似的算法加以优化和改进而得到,有时甚至可以发现新的更好的算法。

发散思维是许多科学家非常重视的一种思维形式,科学家运用发散思维获得重要发现的例子不胜枚举。我们在数学建模的教学过程中倡导学生养成发散思维的习惯,通过一些具体的建模实例,让学生感受到在科学上要敢于联想,敢于突破条条框框,敢于标新立异。

逆向思维,即“反过来想一想”。人们思考问题时常常只注重于已有的联系,沿着合乎习惯的正向顺推,但有时如果采用“倒过来”思考的逆向思维方式,往往会产生意想不到的效果。比如,2004年全国大学生数学建模竞赛A题:奥运会临时超市网点设计中的第三个问题:若有两种大小不同规模的迷你超市(Mini—Supermarket)类型供选择,给出图2中20个商区MS网点的设计方案(即每个商区内不同类型MS的个数,并满足题中三个基本要求:满足奥运会期间的购物需求、分布基本均衡、商业上盈利)。在设计MS网点时为考虑满足商业上盈利这一要求,如果单从正面去考虑商业上的盈利模型,则有很多未知的因素无法确定,诸如商品种类、数量、价格、销售额等,因而无法建立模型。但若运用逆向思维,从市场需求去预测可能的盈利能力,因为市场需求量可利用前述问题中已得到的商区的人流量的分布,从而为后面的规划模型的建立与求解提供了关键性的办法。

4数学建模教学模式的探索

刚踏入大学校门的大一新生,首先接受的是基础数学教育,虽然这一阶段将决定着学生毕业后能否成为创新型人才,但学校要想培养出高质量的创新型人才,基础的数学教育是以知识传授为主体的教与学的过程,多年来的事实证明,这一过程很难肩负对学生创新能力的培养。随着数学建模与数学建模竞赛这一事物的出现,人们很快发现,数学建模教学,尤其是数学建模竞赛的培训是实现这一目标的一条很好的途径。经过多年来的摸索,我们对数学建模的教学模式做了如下探索。

第一,充分再现数学发现的思维过程。学生学习的数学知识,尽管是前人创造性思维的成果,学生作为学习的主体处于再发现的地位,给学生展示数学发现的思维过程,就是引导学生重走数学知识的发现之路,使得学生的再发现得以顺利完成。而这实质上也是对学生创新思维的一种培养过程。然而这一点常常被许多数学教师所忽视,他们只注重数学知识的传授,而隐去了数学知识的发现过程,这就无形地扼制了学生创新思维的发展。而数学建模的教学却能弥补基础数学教学的这一缺陷,能让学生在数学建模的过程中充分体会数学发现的创造性乐趣,从而培养其创新思维。

第二,更新教学形式。传统的单一满堂灌、填鸭式、保姆式的课堂教学形式,容易养成学生对老师的依赖心理,不利于调动学生的主观能动性,更不利于激发学生的创造性思维。因而要想在培养学生的创新能力方面有所突破,必须打破原有的单一教学模式,探索和尝试一些行之有效的新的教学形式。近几年来,我们根据数学建模的具体要求,有意识的尝试了不同于以往传统的教学模式,将多种不同的教学形式进行了优化组合,力求变以教师为中心为以学生为中心,充分调动学生的主观能动性和思维的积极性,培养创新意识和创新能力。

5我校数学建模的教学模式

我校自1994年第一次组队参加全国大学生数学建模竞赛以来,已走过15年的风风雨雨。15年来,在利用数学建模培养学生创新能力方面,我们不断地反思并总结经验和教训。

经过多年来的反复实践和深入探索,我们以培养和提升学生创新能力为目标,以数学建模选修课和数学建模竞赛培训课为载体激发学生的创新欲望,以少数学生影响并带动大多数学生参与数学建模活动体验创新乐趣,作为我们制定数学建模教学大纲、教学计划、确定教学模式的宗旨。下面介绍我校数学建模的教学模式。

数学建模的教学内容分为两部分:

第一部分:数学建模选修课。该课总课时36小时,由4或5位教师每人2或3次课讲完,每位教师每次课主讲一个数学建模方法方面的专题,专题的讲解以先介绍案例再引出理论或先讲述理论再介绍案例的方式进行,每位教师至少布置一道题目,原则上要求每位学生在选修课学完后须上交一份作业,该作业可以是选做教师布置的某一题,也可以自己找题并求解,以论文形式上交。由于时间的限制,选修课中没有介绍论文写作,所以对学生的作业论文并不做严格要求,只注重其内容中是否有闪光的创意之处,并作为后续选拔数学建模竞赛选手的一个重要依据。

第二部分:数学建模竞赛培训课。培训课分三个阶段进行。第一阶段是软件和数学建模方法的培训。软件培训主要介绍的MatLab、Spss、Lingo的使用和基本操作;数学建模方法包括:最优化方法建模、微分方程建模、数理统计方法建模、层次分析法建模、网络图的方法建模、神经网络建模、模糊数学建模、遗传算法建模、概率仿真建模。第二阶段是专题培训。首先从历年全国大学生数学建模竞赛题目中选出9个分为3组,然后由3位多年来的资深指导教师讲解如何审题、破题;如何查找资料、整理资料;如何分析问题、建立模型;如何分析并寻找合适的算法并对模型进行求解;如何对模型求解结果进行分析并加以修改或改进;最后告诉学生如何对自己所做的工作加以总结并写成1篇规范的科技论文。第三阶段是模拟竞赛。给定三个题目,由各参选队任选一题,要求按全国大学生数学建模竞赛的所有规则进行模拟竞赛。三天后各队提交1篇论文,最后选定其中最好的10个队参加全国大学生数学建模竞赛。

参考文献

[1]谢云荪,成孝予,钟守铭。转变教育思想提高数学素质培养创造性人才[J]。工科数学,1997,13(6):132—136。

[2]傅英定,成孝予,彭年斌等。转变教育观念培养学生创造性思维能力的研究与实践。电子高等教育的理论与实践[M]。成都:电子科技大学出版社,2000:181—184。

[3]安正玉,邓正隆。本科教学应突出创造能力的培养[J]。高等科教管理,1997(2):43—46。

[4]李心灿。在高等数学的教学中培养学生创造性思维的一些实践与思考[J]。工科数学,1999,15(6):35—41。

[5]韩中庚等。数学建模竞赛—获奖论文精选与点评[M]。北京:科学出版社2007:201—216。

[6]张仁丽,李捷飞,邱霆。MS网点的合理布局[J]。工程数学学报2004,21(7)29—35。

数学建模论文模板【第四篇】

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

建立简化模型

模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受

到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为3

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的`影响。

模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为1

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若表示通风口的开通程度是,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

数学建模论文模板【第五篇】

一、数学建模教学现状分析

在数学建模教学中,“讲授法”还是主流教学法,虽也有启发,借助多媒体辅助教学,但由于互动不足,学生自主参与较少,主动性和积极性没能有效调动起来,导致教学效果不够理想,学生没懂多少,没有理解掌握数学建模的思想和方法。

二、数学建模教学的改革举措

1、加强宣传。为了让更多的学生了解数学建模,可通过纸质媒体、电子媒体进行宣传,还可通过组建学生数学建模协会开展活动广而告之,还可通过在高等数学的教学中融入数学建模的案例,让学生初步了解数学建模及其特点,产生学习数学建模的兴趣。2.分类开课。为了让更多学生受益,虽有竞赛任务,数学建模选修课还是不应限定选课学生范围,比如只限定一年级学生或者有意参赛的学生,而应面向全体学生开设,又考虑到选课的学生不全是以参加竞赛为目的,不全是对数学建模感兴趣,甚至有些是因为没得选而又必须完成选修课学分的要求,可将选修课班级分“普及班”和“竞赛班”两类供学生选择,既满足学生选课的需求又兼顾竞赛的需要,对不同班级提出不同的教学要求。3.优化教学内容。在选择教学内容时,应注意如下几点:一是模型类型不宜太多,不要搞得太复杂,比如只讲初等模型、简单的优化模型;二是模型数量不宜太多,以4-6个为宜;三是难度不宜太大,还应循序渐进,内容最好为学生了解、喜闻乐见,所选模型应有利于培养学生求异思维、创新思维;四是加入数学软件的教学,让学生“玩起来”,初步学会数学软件的使用,体会数学建模与普通数学的不同之处,体验到数学的用武之地。4.改进教学方法。传统的讲授式教学法,学生一般处于被动状态,不利于发挥学生的主观能动性,而要学好数学建模需要学生主动积极参与,更多参与到教学过程当中来,因此应该采用任务驱动教学法、互动式教学法、研讨式教学法等。

三、收获与体会

从20xx年开始,我们在数学建模选修课教学中进行了实践,取得了良好效果,有如下收获和体会:

数学建模课堂教学面貌换然一新。任务驱动、互动式、研讨式等教学法的综合运用,改变了以往“教师讲,学生听”,学生被动的教学模式,转变为学生主动参与、自主协作、积极探索的新型学习模式,践行了“教师为主导、学生为主体”教育精神;通过教师引导学生进行研究学习,让学生亲历知识产生与形成的过程,学会独立运用其所学的数学知识解决实际问题,从而实现知识发现与重构,激发学生的学习潜能和学习兴趣,培养了学生的学习能力和应用能力,使课堂充满活力。2.树立了学生学好数学建模的自信心。由于教法得当,优化了教学内容,加入了数学软件的学习,使学生成为了学习的主人,不再是知识的被动接受者,而是通过亲身实践、主动探索去学习发现知识,从中体验到了成功的喜悦,克服困难的乐趣;降低了学习的难度,渐进的内容安排,使学生不再觉得数学建模难以学习;而且内容贴近生活实际,使学生不再认为数学无用武之地,变要我学为我要学。

3、教师要善于组织、指导、监控。教师组织安排教学内容时,必须要对教学内容要有透彻的理解,教学设计要有较强针对性,切实可行,要使学生通过完成任务,实现教学目标、达到教学目的;在学生自主协作学习过程中,教师要注意监控学生的学习进程,了解学生学习过程中碰到有哪些困难,给予学生适当的指导或组织学生攻坚克难。

23 209439
");