数学建模论文精编5篇
【路引】由阿拉题库网美丽的网友为您整理分享的“数学建模论文精编5篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
数学建模论文模板1
一、小学数学建模
"数学建模"已经越来越被广大教师所接受和采用,所谓的"数学建模"思想就是通过创建数学模型的方式来解决问题,我们把该过程简称为"数学建模",其实质是对数学思维的运用,方法和知识解决在实际过程中遇到的数学问题,这一模式已经成为数学教育的重要模式和基本内容。叶其孝曾发表《数学建模教学活动与大学数学教育改革》,该书指出,数学建模的本质就是将数学中抽象的内容进行简化而成为实际问题,然后通过参数和变量之间的规律来解决数学问题,并将解得的结果进行证明和解释,因此使问题得到深化,循环解决问题的过程。
二、小学数学建模的定位
1、定位于儿童的生活经验
儿童是小学数学的主要教学对象,因此数学问题中研究的内容复杂程度要适中,要与儿童的生活和发展情况相结合。"数学建模"要以儿童为出发点,在数学课堂上要多引用发生在日常生活中的案例,使儿童在数学教材上遇到的问题与现实生活中的问题相结合,从而激发学生学习的积极性,使学生通过自身的经验,积极地感受数学模型的作用。同时,小学数学建模要遵循循序渐进的原则,既要适合学生的年龄特征,赋予适当的挑战性;又要照顾儿童发展的差异性,尊重儿童的个性,促进每一个学生在原有的基础上得到发展。
2、定位于儿童的思维方式
小学生的特点是年龄小,思维简单。因此小学的数学建模必须与小学生的实际情况相结合,循序渐进的进行,使其与小学生的认知能力相适应。
实际情况表明,教师要想使学生能够积极主动的思考问题,提高他们将数学思维运用到实际生活中的能力,就必须把握好儿童在数学建模过程中的情感、认知和思维起点。我们以《常见的数量关系》中关于速度、时间和路程的教学为例,有的老师启发学生与二年级所学的乘除法相结合,使乘除法这一知识点与时间、速度和路程建立了关联,从而使"数量关系"与数学原型"一乘两除"结合起来,并且使学生利用抽象与类比的思维方法完成了"数量关系"的"意义建模",从而创建了完善的认知体系。
三、小学"数学建模"的教学策略
1、培育建模意识
当前的小学数学教材中,大部分内容编排的思路都是以建模为基础,其内容的开展模式主要是"生活情景到抽象模型,然后到模型验证,最后到模型的运用和解释"。培养建模思维的关键是对教材的解读是否从建模出发,使教材中的建模思想得到充分的开发。然后对教材中比较现实的问题进行充分的挖掘,将数学化后的实际问题创建模型,最后解决问题。教师要提高学生对建模的意识与兴趣就要充分挖掘教材,指导学生去亲身体会、思考沟通、动手操作、解决问题。其次,通过引入贴近现实生活、生产的探索性例题,使学生了解数学是怎样应用于解决这些实际问题的。同时,让学生在利用数学建模解决实际问题的过程中理解数学的应用价值和社会功能,不断增强数学建模的意识。
2、体验建模过程
在数学的建模过程中,要将生活中含有数学知识与规律的实际问题抽象化,从而建成数学模型。然后利用数学规律对问题进行推理,解答出数学的结果后再进行证明和解释,从而使实际问题得到合理的解决。我们以解决问题的方法为例,使学生能够解决题目不是教学的唯一目的,使学生通过对数学问题的研究和体验来提升自己"创建"新模型的能力。使学生在不断的提出与解决问题的过程中培养成自主寻找数学模型和数学观念的习惯。如此一来,当学生遇到陌生的问题情境,甚至是与数学无关的实际问题时,都能够具备"模型"思想,处理问题的过程能具备数学家的"模型化"特点,从而使"模型思想"影响其生活的各个方面。
3、在数学建模中促进自主性建构
要使"知识"与"应用"得到良好的结合就必须提高学生积极构建数学模型的能力。我们要将数学教学的重点放在对学生观察、整合、提炼"现实问题"的能力培养上来。教学过程中,通过对日常问题的适当修改,使学生的实际生活与数学相结合,从而提升学生发现和提出问题,并通过创建模型解决问题的能力,为学生提供能够自主创建模型的条件。
我们以《比较》这课程内容为例,我们通过"建模"这一教学方法,培养学生对">""""<"和"="等符号。这种将学生的实际生活与课堂教学相结合的方法,使学生能够轻松的创建其数学模型,提升他们自主建模的信心。
四、总结
数学建模是将实际生活与数学相结合的有效途径和方法。学生在创建数学模型的过程中,其思维方式也得到了锻炼。小学阶段的教学,其数学模型的构建应当以儿童文化观为基础,其目的主要是培养儿童的建模思想,这也是提升小学生学习数学积极性,提升课堂文化气息的有效方法和途径。
以上就是差异网为大家整理的5篇《数学建模论文》,您可以复制其中的精彩段落、语句,也可以下载DOC格式的文档以便编辑使用。
数学建模论文模板2
一、在高职高专高等数学教学中融入数学建模的基本思路
在高职高专高等数学教学中融入数学建模,首先在概念讲授中要融入数学建模思想。数学概念是高等数学学习的基础,同时也是高等数学的灵魂,能不能理解数学基本概念是能否学好数学的关键。在讲解概念的过程中要让学生了解这些概念的来龙去脉,让学生充分了解数学概念产生、发展、应用的全部过程,要让学生明白为什么要学高等数学,带着问题主动去学习,注重讲清高等数学概念是怎样形成的,再结合学生所学专业背景,将这些概念与现实生活中的问题联系起来。例如在学习导数概念这一节时,可以将概念的讲解和现实生活中实际现象相结合,如:二氧化碳的排放造成的全球变暖、猪肉价格的涨跌、自由下落物体运动等,让学生思考平均变化率和瞬时变化率的问题,然后讲解两个经典的数学模型:物体的瞬时速度和曲线的切线斜率,进而提出导数的概念,通过与现实问题结合讲授概念,能让学生更好地理解并应用导数概念。
其次,在高职高专高等数学教学中,将数学建模案例与定理讲解相结合。例如,在介绍条件极值的时候,可以与“奶制品的生产与销售”这个建模例子结合起来讲解,通过教师的引导,将条件极值和这个问题联系起来,找到它们之间的关系,用数学建模的思想解决这个实际问题。在讲解极值定理时,可以增加简单的优化模型,例如与“存贮模型”“生猪出售时机”“最优价格”等数学模型相结合。通过这些实际问题的模型,学生能更好理解高等数学中定理,并学会应用定理解决实际问题。再次,在高等数学习题课教学中可以增加建模案例教学的环节,数学建模案例的难易程度应与高职高专学生的知识水平和学习能力相符,过于简单或过于困难都不利培养学生的学习兴趣,要选取难易适当、与现实生活相关的实际问题,例如,在微分中值定理及导数应用这一章习题课中可以增加“消费者选择”数学模型;在积分知识及其应用这一章习题课中可以增加“存储问题”数学模型,在微分方程这一章的习题课中,可以增加“经济增长模型”和“香烟过滤嘴的作用”,等等。通过对这些与现实相关的问题的研究,学生能清楚地认识到高等数学在实际问题中的应用,从而积极主动地应用数学知识分析问题、解决问题。最后,可以在高等数学课程的考核中增加数学建模问题。
学完每章节的内容后,在课外作业的布置中,除书本中的习题外可以再增加一两道需要运用本章知识解决的实际问题的数学建模题目,这些数学建模可以让学生独立或自由组合成小组去完成,给予完成情况好的学生较高的平时分,在期末考试试题中以附加题的形式增加数学建模的题目。用这种方法,鼓励学生应用数学的知识解决现实中各种问题,提高学生使用数学知识解题的能力,调动学生的学习积极性,从而使学生获得除数学知识本身以外的素质与创新能力。
二、在高职高专教学中融入数学建模,教师要具备创造性思维和创新精神
在高职高专高等数学教学中融入数学建模的思想,要培养教师具有较高的创造型思维修养和较强的创新精神。创造性思维和创新精神内涵丰富,要有刻苦钻研、敢于探索的精神,脚踏实地、勤奋、求真务实的态度,锲而不舍、坚韧不拔的意志,不畏艰难、艰苦奋斗的心理准备,良好的心态、强烈的自我控制和团队协作意识等多方面的品质。教师是高职高专人才培养质量的重要因素,高职高专院校要培养学生的思考能力和探索精神,教师必须具备较高创造性思维修养和创新精神,如果高职高专的教师队伍不具备创造性和创新性,培养出的学生就不可能具备探索精神和创新品质。实践证明,高职高专数学建模教学的顺利开展,可以让教师在教学中增加实际问题模型,让教师在教学过程中与学生形成互动,引导学生应用所学数学知识解决实际问题模型,培养学生自主创新思考能力,打破传统的“填鸭式”、“满堂灌”等教学方式,让学生由被动学习转变为主动学习,达到良好的教学效果。
数学建模论文模板3
一、引言
随着我国高等教育的发展,高校招生规模越来越大,而生源质量较低,特别是独立学院院校。就我校而言,绝大多数专业都开设了数学类课程。但在教学中,普遍认为理论性太强,与实际脱节严重,不能引起学生的学习兴趣。并且,传统教学忽视了学生用数学解决实际问题的能力,所以,进行数学教学改革势在必行。数学建模可培养学生利用数学知识解决实际问题的能力,通过数模方法对实际问题进行巧妙处理,让学生体会到数学不仅能传播理论知识和求解一些数学问题,还可将其应用到实际问题中,让学生看到一些实际模型的来龙去脉,提高学生的学习积极性。数学建模是培养学生综合科学素质和创新能力的一个极好载体,而且能充分考验学生的洞察能力、创新能力、联想能力、使用当代科技最新成果的能力等。学生们同舟共济的团队合作精神和协调组织能力,以及诚信意识和自律精神的塑造,都能得到很好的培养。技能技术的掌握和团队合作精神对于独立学院学生将来进入社会十分重要,这也是衡量独立学院办学成功与否的一个方面。因此,独立学院的人才培养目标定位,既要达到本科生应具备的理论基础,又要有相对突出的专业技能,应培养“应用型本科”人才。因而,独立学院的数学课堂上应该多方面渗透数学模型的思想。
二、数学模型融入数学课堂教学的必要性
(一)人才培养创新的需要
根据独立学院人才培养目标和实际情况,有针对性的加大基础课和实践环节教学的'比重,侧重于实践能力的培养,在专业课程体系中适当增加实验、实践教学内容,加强与社会实体的联系。力求培养出具有实际操作能力的高素质大学生。数学建模是将一个实际问题,对其作出一些必要的简化与假设,将其转化成一个数学问题,借助数学工具和数学方法精确或近似地解决该问题,并用数学结果解释客观现象、回答实际问题并接受客观实际的检验。数学建模能弥补传统数学教学在实际应用方面的不足,促进数学教师在现代化教学手段、教学模式方面的更新。数学建模有助于调动学生的学习兴趣,在计算机应用能力、实践能力和创新意识的培养方面都有着非常大的作用,以便学生将来能更好地适应工作岗位。
(二)高校教学改革的需要
当今社会信息高度发达,竞争日益激烈,必须具备一定的创新意识和创新能力,否则很难适应社会信息时代的要求。传统的教学模式是以课堂理论讲授为主,学生绝大部分时间都集中学习书本知识,很少有机会接触社会,也难做到学以致用。绝大多数课程都是教师的一言堂,考试也是以教师讲课内容为主。学生忙于记录和背诵而闲置其聪慧的头脑。长期的灌输式教学导致学生明显缺乏学习的主动性,会听从而不会质疑,更不会形成开创性的观点,很难适应企事业单位动态的工作环境。数学作为一门传统基础学科,对独立学院的学生来说,学习上有一定的难度。我们的教学应以“必需,够用”为度。数学建模从形式到内容,都与毕业后工作时的条件非常相近,是一次非常好的锻炼,学生通过自主的学习,把实际的问题转化为数学理论解决,有助于学生创新能力的培养动手能力的提高,这也正是独立学院院校应用型本科人才培养的方向。
(三)学生参加数学建模竞赛的需要
独立学院学生思维活跃,且比较注重个人能力素质的提高。很多学生愿意在学校参加一些竞赛来提高自己。全国大学生数学建模竞赛尤其受学生重视,但仍有很多大学生不了解这类竞赛,因此,在数学课堂上引入数学建模思想,学生既了解了数学建模,又对数学公式提起了兴趣,还有助于独立学院学生在全国大学生数学建模竞赛中取得优异成绩。
三、结语
高等数学的作用表现在为各专业后续课程的学习提供必要的数学知识,培养各专业学生的数学思想与数学修养,全面提高大学生创新思维和应用能力。只有把数学建模思想融入数学教学中,才能调动学生学习数学的积极性,培养学生的创新能力,实现提高学生综合分析问题能力的最终目标。
作者:崔玮 王文丽 单位:中国地质大学长城学院信息工程系
数学建模论文模板4
一、将数学建模融入医科高等教学的意义
(一)提高课堂教学的质量
在数学学科自身特质的局限下,数学课堂很难引起学生们的兴趣,因为教师针对相关公式的讲解和定理的介绍,只能让学生处于被动的接受状态中,无法产生较强的互动性和交流,更不便于通过快速理解而记忆.由于数学建模存在着实际应用价值,且在教学环节可以营造出生动的课堂氛围,所以将其引入数学课堂,可以起到提升学生学习兴趣,提高课堂教学质量的作用.当数学知识从单纯的数字和符号,变成具有实际意义的信息,则学生的接受度显然更高,也更便于理解和记忆.多人参与的数学建模环节,交流与互动性也得到了增强.此外,归纳法和演绎法等数学方法在数学建模中的应用,可以潜移默化的增强学生数学基础知识.
(二)培养学生分析、解决实际问题的能力
数学建模针对现实问题的价值和作用,需要建立在合理数学模型的基础之上.模型的准备、假设、构成与求解、应用一系列步骤,需要学生善于思考,积极的将数学知识融入其中,把握问题的矛盾,透过假设来达成最终的实践目的.在此背景下,无疑可以强化学生分析和解决实际问题的综合能力.
(三)培养学生的创新能力和协作精神
数学建模没有唯一的答案,是一个开放性的问题,在使用者所采用数学知识相异思维模式不同的情况下,最终形成的方法和路径也会存在差异.所以,想象力和创造力在建模过程中存在着重要的价值.包括简化理解问题、选择数学工具问题、设置合理结构问题、强化应用性问题等等,一系列的问题都需要使用者能够大胆创新,勇于探索,以打破常规的思路,构建更加合理的数学建模模型.一般情况下,一个人无法完成数学建模的整个流程,需要几个人共同参与到建模的各个环节,了解背景、构建模型和模拟辅助求解等等.在多人共同完成建模的过程中,思想上、语言上会有大量的交流,智慧的交融有助于开拓学生的思路,强化团队协作精神.
二、将数学建模融入医科高等教学的方法
(一)讲解定理公式时联系实际
从客观事物的空间关系或数量中抽象出的数学概念,其定理和概念与实际需求有着密切的关联.但是在医科高等数学教学环节,由于课时紧张的问题,往往会引起前因后果的教学疏忽情况,直接让学生去理解记忆定理和计算证明,显然无法起到良好的教学成果.因此,在教学的环节,如果能够融入更多的数学思想、思想背景,则可以起到事半功倍的效果.举例说明,在积分计算教学环节中,采用多媒体设施,以动画的形式来演示曲边梯形的近似、取极限、分割和求和过程,重点突出积分计算中的以直代曲、化整为零的数学方法和思想,打破单纯的说教模式,让学生在生动的演示中加深记忆,最后学以致用.
(二)结合案例教学
作为数学建模中的常规手段,案例教学可以透过启发、讨论和讲解等多个方式,强化学生的思考积极性,提升教学效果.之后再次透过实际案例,比如非典型肺炎的爆发,来测试数学模型的可行性,以此验证准确认识疾病传播规律的重要价值.此外,还可以采取课堂结合数学建模的方法,结合药物动力学课程和药物房室模型,让学生学习药物在人体内的循环、作用情况,真正的认识模型建立对于药物设计、评价和改进的重要应用意义.在此背景下,学生的眼界得到了开拓,同时学习的新鲜感和兴趣也会与日俱增.
(三)使用工具软件,灵活安排课后练习
随着现代计算机、网络信息技术的快速发展,数学建模也可以借助计算机的科技能力,完善和普及软件的应用,解决数学建模中的一些特殊难题.在计算机的帮助下,数学建模的使用范围和效率都得到了一定程度的提升.为了强化教学质量,医科高等数学老师可以在课堂教学后,布置一定的课后练习作业,让学生自由组队,在之后的课堂上汇报研究成果和问题解决报告.这种方式不仅可以强化学生之间的思想交流,还能够让学生参与到教学环节,提升学习热情和兴趣.
综上所述,医科高等数学教学得到数学建模渗透后,有助于提升学生的创新能力、团队协作精神以及实际应用能力.在新时期发展背景下,教育改革需要各个学科作出及时的调整,为培养符合时代发展需求的人才做好充足的准备.在此基础上,所有的教师们,都应该积极探索灵活的教学模式.
数学建模论文模板5
论文关键词:数学建模数学应用意识数学建模教学
论文摘要:为增强学生应用数学的意识,切实培养学生解决实际问题的能力,分析了高中数学建模的必要性,并通过对高中学生数学建模能力的调查分析,发现学生数学应用及数学建模方面存在的问题,并针对问题提出了关于高中进行数学建模教学的几点意见。
数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自进入21世纪的知识经济时代以来,数学科学的地位发生了巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数学理论与方法的不断扩充使得数学已成为当代高科技的一个重要组成部分,数学已成为一种能够普遍实施的技术。培养学生应用数学的意识和能力也成为数学教学的一个重要方面。
目前国际数学界普遍赞同通过开展数学建模活动和在数学教学中推广使用现代化技术来推动数学教育改革。美国、德国、日本等发达国家普遍都十分重视数学建模教学,把数学建模活动从大学生向中学生转移是近年国际数学教育发展的一种趋势。“我国的数学教育在很长一段时间内对于数学与实际、数学与其它学科的联系未能给予充分的重视,因此,高中数学在数学应用和联系实际方面需要大力加强。”我国普通高中新的数学教学大纲中也明确提出要切实培养学生解决实际问题的能力,要求增强应用数学的意识,能初步运用数学模型解决实际问题。这些要求不仅符合数学本身发展的需要,也是社会发展的需要。因此我们的数学教学不仅要使学生知道许多重要的数学概念、方法和结论,而且要提高学生的思维能力,培养学生自觉地运用数学知识去处理和解决日常生活中所遇到的问题,从而形成良好的思维品质。而数学建模通过"从实际情境中抽象出数学问题,求解数学模型,回到现实中进行检验,必要时修改模型使之更切合实际"这一过程,促使学生围绕实际问题查阅资料、收集信息、整理加工、获取新知识,从而拓宽了学生的知识面和能力。数学建模将各种知识综合应用于解决实际问题中,是培养和提高学生应用所学知识分析问题、解决问题的能力的必备手段之一,是改善学生学习方式的突破口。因此有计划地开展数学建模活动,将有效地培养学生的能力,提高学生的综合素质。
数学建模可以提高学生的学习兴趣,培养学生不怕吃苦、敢于战胜困难的坚强意志,培养自律、团结的优秀品质,培养正确的数学观。具体的调查表明,大部分学生对数学建模比较感兴趣,并不同程度地促进了他们对于数学及其他课程的学习.有许多学生认为:"数学源于生活,生活依靠数学,平时做的题都是理论性较强,实际性较弱的题,都是在理想化状态下进行讨论,而数学建模问题贴近生活,充满趣味性";"数学建模使我更深切地感受到数学与实际的联系,感受到数学问题的广泛,使我们对于学习数学的重要性理解得更为深刻"。数学建模能培养学生应用数学进行分析、推理、证明和计算的能力;用数学语言表达实际问题及用普通人能理解的语言表达数学结果的能力;应用计算机及相应数学软件的能力;独立查找文献,自学的能力,组织、协调、管理的能力;创造力、想象力、联想力和洞察力。由此,在高中数学教学中渗透数学建模知识是很有必要的。
那么当前我国高中学生的数学建模意识和建模能力如何呢?下面是节自有关人士对某次竞赛中的一道建模题目学生的作答情况所作的抽样调查。题目内容如下:
某市教育局组织了一项竞赛,聘请了来自不同学校的数名教师做评委组成评()判组。本次竞赛制定四条评分规则,内容如下:
(1)评委对本校选手不打分。
(2)每位评委对每位参赛选手(除本校选手外)都必须打分,且所打分数不相同。
(3)评委打分方法为:倒数第一名记1分,倒数第二名记2分,依次类推。
(4)比赛结束后,求出各选手的平均分,按平均分从高到低排序,依此确定本次竞赛的名次,以平均分最高者为第一名,依次类推。
本次比赛中,选手甲所在学校有一名评委,这位评委将不参加对选手甲的评分,其他选手所在学校无人担任评委。
(Ⅰ)公布评分规则后,其他选手觉得这种评分规则对甲更有利,请问这种看法是否有道理?(请说明理由)
(Ⅱ)能否给这次比赛制定更公平的评分规则?若能,请你给出一个更公平的评分规则,并说明理由。
本题是一道开放性很强的好题,给学生留有很大的发挥空间,不少学生都有精彩的表现,例如关于评分规则的修正,就有下列几种方案:
方案1:将选手甲所在学校评委的评分方法改为倒数第一名记1+分,倒数第二名记2+,…依次类推;(评分标准)
方案2:将选手甲所在学校评委的评分方法改为在原来的基础上乘以;
方案3:对甲评分时,用其他评委的平均分计做甲所在学校评委的打分;
然而也有不少学生为空白,究其原因可能除了时间因素,学生对于较长的文字表述产生畏惧心理、不能正确阅读是重要因素。同时,一些学生由于不能正确理解规则(3),得出选手甲的平均得分为,其他选手的平均得分为
,从而得出错误结论。不少学生出现“甲所在学校的评委会故意压低其他选手的分数,因而对甲有利”的解释,而没有意识到作出必要的假设是数学建模方法中的重要且必要的一环。有些学生在正确理解题意的基础上,提出了“规则对甲有利”的理由,例如:排名在甲前的同学少得了1分;甲所在学校的评委不给其他选手最高分(n分),所以甲得最高分的概率比其他选手高;相当于甲所在学校的评委把最高分给了甲;甲少拿一个分数,若少拿最低分,则有利;若少拿最高分,则不利;等等。以上各种想法都有道理,遗憾的是大部分学生仅仅停留在这些感性认识和文字说明上,没能进一步引进数学模型和数学符号去进行理性的分析。如何衡量规则的公平性是本题的关键,也是建模的原则。很少有学生能够明确提出这个原则,有些学生在第2问评分规则的修正中,提出“将甲所在学校的评委从评判组中剔除掉”,这种办法违背实际的要求。有些学生被生活中一些现象误导,提出“去掉最高分和最低分”的评分规则修正方法,而不去从数学的角度分析和研究。
通过对这道高中数学知识应用竞赛题解答情况的分析,我们了解到学生数学建模意识和建模能力的现状不容乐观。学生在数学应用能力上存在的一些问题:(1)数学阅读能力差,误解题意。(2)数学建模方法需要提高。(3)数学应用意识不尽人意数学建模意识很有待加强。新课程标准给数学建模提出了更高的要求,也为中学数学建模的发展提供了很好的契机,相信随着新课程的实施,我们高中生的数学建模意识和建模能力会有大的提高!
那么高中的数学建模教学应如何进行呢?数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。不同于传统的教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分折和解决问题的全过程,提高他们分折问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力。数学建模以学生为主,教师利用一些事先设计好的问题,引导学生主动查阅文献资料和学习新知识,鼓励学生积极开展讨论和辩论,主动探索解决之法。教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。
(一)在教学中传授学生初步的数学建模知识。
中学数学建模的目的旨在培养学生的数学应用意识,掌握数学建模的方法,为将来的学习、工作打下坚实的基础。在教学时将数学建模中最基本的过程教给学生:利用现行的数学教材,向学生介绍一些常用的、典型的数学模型。如函数模型、不等式模型、数列模型、几何模型、三角模型、方程模型等。教师应研究在各个教学章节中可引入哪些数学基本模型问题,如储蓄问题、信用贷款问题可结合在数列教学中。教师可以通过教材中一些不大复杂的应用问题,带着学生一起来完成数学化的过程,给学生一些数学应用和数学建模的初步体验。
例如在学习了二次函数的最值问题后,通过下面的应用题让学生懂得如何用数学建模的方法来解决实际问题。例:客房的定价问题。一个星级旅馆有150个客房,经过一段时间的经营实践,旅馆经理得到了一些数据:每间客房定价为160元时,住房率为55%,每间客房定价为140元时,住房率为65%,
每间客房定价为120元时,住房率为75%,每间客房定价为100元时,住房率为85%。欲使旅馆每天收入最高,每间客房应如何定价?
[简化假设]
(1)每间客房最高定价为160元;
(2)设随着房价的下降,住房率呈线性增长;
(3)设旅馆每间客房定价相等。
[建立模型]
设y表示旅馆一天的总收入,与160元相比每间客房降低的房价为x元。由假设(2)可得,每降价1元,住房率就增加。因此由可知于是问题转化为:当时,y的最大值是多少?
[求解模型]
利用二次函数求最值可得到当x=25即住房定价为135元时,y取最大值(元),
[讨论与验证]
(1)容易验证此收入在各种已知定价对应的收入中是最大的。如果为了便于管理,定价为140元也是可以的,因为此时它与最高收入只差元。
(2)如果定价为180元,住房率应为45%,相应的收入只有12150元,因此假设(1)是合理的。
(二)培养学生的数学应用意识,增强数学建模意识。
首先,学生的应用意识体现在以下两个方面:一是面对实际问题,能主动尝试从数学的角度运用所学知识和方法寻求解决问题的策略,学习者在学习的过程中能够认识到数学是有用的。二是认识到现实生活中蕴含着大量的数学信息,数学在现实世界中有着广泛的应用:生活中处处有数学,数学就在他的身边。其次,关于如何培养学生的应用意识:在数学教学和对学生数学学习的指导中,介绍知识的来龙去脉时多与实际生活相联系。例如,日常生活中存在着“不同形式的等量关系和不等量关系”以及“变量间的函数对应关系”、“变相间的非确切的相关关系”、“事物发生的可预测性,可能性大小”等,这些正是数学中引入“方程”、“不等式”、“函数”“变量间的线性相关”、“概率”的实际背景。另外锻炼学生学会运用数学语言描述周围世界出现的数学现象。数学是一种“世界通用语言”它能够准确、清楚、间接地刻画和描述日常生活中的许多现象。应让学生养成运用数学语言进行交流的习惯。例如,当学生乘坐出租车时,他应能意识到付费与行驶时间或路程之间具有一定的函数关系。鼓励学生运用数学建模解决实际问题。首先通过观察分析、提炼出实际问题的数学模型,然后再把数学模型纳入某知识系统去处理,当然这不但要求学生有一定的抽象能力,而且要有相当的观察、分析、综合、类比能力。学生的这种能力的获得不是一朝一夕的事情,需要把数学建模意识贯穿在教学的始终,也就是要不断的引导学生用数学思维的观点去观察、分析和表示各种事物关系、空间关系和数学信息,从纷繁复杂的具体问题中抽象出我们熟悉的数学模型,进而达到用数学模型来解决实际问题,使数学建模意识成为学生思考问题的方法和习惯。通过教师的潜移默化,经常渗透数学建模意识,学生可以从各类大量的建模问题中逐步领悟到数学建模的广泛应用,从而激发学生去研究数学建模的兴趣,提高他们运用数学知识进行建模的能力。
(三)在教学中注意联系相关学科加以运用
在数学建模教学中应该重视选用数学与物理、化学、生物、美学等知识相结合的跨学科问题和大量与日常生活相联系(如投资买卖、银行储蓄、测量、乘车、运动等方面)的数学问题,从其它学科中选择应用题,通过构建模型,培养学生应用数学工具解决该学科难题的能力。例如,高中生物学科以描述性的语言为主,有的学生往往以为学好生物学是与数学没有关系的。他们尚未树立理科意识,缺乏理科思维。比如:他们不会用数学上的排列与组合来分析减数分裂过程配子的基因组成;也不会用数学上的概率的相加、相乘原理来解决一些遗传病机率的计算等等。这些需要教师在平时相应的课堂内容教学中引导学生进行数学建模。因此我们在教学中应注意与其它学科的呼应,这不但可以帮助学生加深对其它学科的理解,也是培养学生建模意识的一个不可忽视的途径。又例如教了正弦函数后,可引导学生用模型函数写出物理中振动图象或交流图象的数学表达式。
最后,为了培养学生的建模意识,中学数学教师应首先需要提高自己的建模意识。中学数学教师除需要了解数学科学的发展历史和发展动态之外,还需要不断地学习一些新的数学建模理论,并且努力钻研如何把中学数学知识应用于现实生活。中学教师只有通过对数学建模的系统学习和研究,才能准确地的把握数学建模问题的深度和难度,更好地推动中学数学建模教学的发展。
下一篇:班主任实习工作计划汇总5篇