初三数学教学计划【优秀4篇】
【前言导读】此篇优秀教学范文“初三数学教学计划【优秀4篇】”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!
初三数学教学计划【第一篇】
一、指导思想
本学期,我继续全身心投入国家的教育事业,服从学校相关工作安排,做好教育教学工作。并通过课改尝试寻找突破点,通过各种途径努力提高自己的业务水平,以新时代的优秀教师的标准严格要求自己。
二、学情分析
本学期我担任初三年级x班、x班的数学教学工作,所担任班主任的4班现共有学生x人,其中男生x,女生x人。从成绩来上看,班上学生的数学只有x个优秀,x个及格,因此在平时的教学中应该特别注重基础。而x班,有一部分学生存在数学上的偏科,学习数学较吃力,也有不少学生解题作答比较粗心,不能很好的发挥出自己应有的水平。
三、教学目标
教学中落实新课改,体现新理念,培养创新精神。通过数学课的教学,使学生切实学好从事现代化科学技术所必需的数学基础知识和基本技能,努力培养学生的逻辑思维能力、运算能力、空间想象能力,以及分析问题、解决问题的能力,促使各类学生数学成绩都有相应的提高。
四、教材分析
第二十一章一元二次方程:本章主要是掌握配方法、公式法和因式分解法解一元二次方程,并运用一元二次方程解决实际问题。本章重点是解一元二次方程的思路及具体方法。本章的难点是解一元二次方程。
第二十二章二次函数:本章主要掌握二次函数的图像和性质,二次函数与一元二次方程的关系,实际问题与二次函数。本章重难点就是二次函数的图像和性质及应用。
第二十三章旋转:本章主要是探索和理解旋转的性质,能够按要求作出简单平面图形旋转后的图形。本章的重点是中心对称的概念、性质与作图。本章的难点是辨认中心对称图形,按要求作出简单平面图形旋转后的图形。
第二十四章圆:理解圆及有关概念,掌握弧、弦、圆心角的关系,探索点与圆、直线与圆、圆与圆之间的位置关系,探索圆周角与圆心角的关系,直径所对圆周角的特点,切线与过切点的半径之间的关系,正多边形与圆的关系。
第二十五章概率初步:理解概率的意义及其在生活中的广泛应用。本章的重点是理解概率的意义和应用,掌握概率的计算方法。本章的难点是会用列举法求随机事件的概率。
五、具体措施
1.认真钻研教材,积极捕捉课改信息,尽力倡导自主、合作、探究学习,力争培养学生的学习兴趣和个性品质。
2.把握学生思想动态,及时与学生沟通,建立民主、平等、和谐的师生关系。
3.充分利用课堂教学时间,帮助学生理解教学重难点,训练考点、热点,强化记忆,形成能力,提高成绩。
4.改进教学方法,用多媒体创设情景进行教学,力求课堂的多样化、生活化和开放化,力争有更多的师生互动、生生互动的机会。
5.精讲多练,在教学新知识的同时,注重旧知识的复习,使所学知识系统化,条理化,让学生在练习、测试中巩固提高,减少遗忘。
6.加强培优补差中促差生的个别辅导,因材施教,培养学生的个性特长。特别要多鼓励后进生,提高他们的学习兴趣,培养他们良好的学习习惯:(1)课前预习习惯;(2)积极思考,主动发言习惯;(3)自主作业习惯;(4)课后复习习惯。
初三第二学期数学教学计划【第二篇】
本学期是初中学习的关键时期,教学任务非常艰巨。要完成教学任务,必须紧扣教学大纲,结合教学内容和学生实际情况,把握好重点、难点。同时九年级毕业班总复习的教学时间紧,任务重,要求高,如何提高数学总复习的质量和收效,是每位毕业班数学教师必须要解决的问题。下面针对我班的情况进行分析并制定复习计划。
一、学情分析
本班学生两极分化比较严重,部分学生数学基础不够好,学习积极性不高,其中女生居多:魏忠丽、张奥婷、王亚伟、宋明星、戴春林、安璐、廉婧灏、李佳慧等。部分男生学习习惯不太好,家长也不够重视,如:尚国华、祁时杰、武泉铮、肖国路、王宏宏等。由于平时学习不够认真和扎实,我非常担心这些学生对前面所学的一些基础知识记忆不清,掌握不牢。
二、教学内容分析
本学期的课本内容只剩下投影和视图这一章,因此在一周内把课本最后一章结束,接下来就是整体初中内容的有计划复习,复习的教学内容大致可分成代数、几何两大部分,其中初中数学教学中的六大版块即:“实数与统计”、“方程与函数”、“解直角三角形”、“三角形”、“四边形”、“圆”是学业考试考中的重点内容。
在《课标》要求下,培养学生创新精神和实践能力是当前课堂教学的目标。在近几年的中考试卷中逐渐出现了一些新颖的题目,如探索开放性问题,阅读理解问题,以及与生活实际相联系的应用问题。这些新题型在中考试题中也占有一定的位置,并且有逐年扩大的趋势。如果想在综合题以及应用性问题和开放性问题中获得好成绩,那么必须具备扎实的基础知识和知识迁移能力。因此在总复习阶段,必须牢牢抓住基础不放,对一些常见题解题中的通性通法须掌握。
学生解题过程中存在的主要问题:
(1)审题不清,不能正确理解题意;
(2)解题时自己画几何图形不会画或有偏差,从而给解题带来障碍;
(3)对所学知识综合应用能力不够;
(4)几何依然对部分同学是一个难点,主要是几何分析能力和推理能力较差。
三、教学计划措施
1、认真研读学习课标,紧抓中考方向,了解中考的有关的政策,避免走弯路,走错路。同时研读《中考说明》,看清范围,研究评分的标准,牢记每一个得分点。
2、扎扎实实打好基础。
重视课本,系统复习。初中数学基础包括基础知识和基本技能两方面。现中考仍以基础的为主,有些基础题是课本的原型或改造,后面的大题是教材题目的引伸、变形或组合,复习时应以课本为主。尤其课后的读一读,想一想,有些中考题就在此基础上延伸的,所以,在做题时注意方法的归纳和总结,做到举一反三。
3、综合运用知识,提高自身的各种能力。
初中数学基本能力有运算能力、思维能力、空间想象能力以及体现数学与生产、生活相关学科相联系的能力等等。
(1)提高综合运用数学知识解题的能力。要求学生必须把各章节的知识联系起来,并能综合运用,做到触类旁通。目前应根据自身的实际,有针对性地复习,查漏补缺做好知识归纳、解题方法地归纳。
(2)狠抓重点内容,适当练习热点题型。几年来,初中的数学的方程、函数、直线型一直是中考的重点内容。方程思想、函数思想贯穿试卷始终。另外,开放题、探索题、阅读理解题、方案设计、动手操作等问题也是中考的热点题型,所以应重视这方面的学习与训练,以便适应这类题型。
4、注重课后反思,及时的将一节课的得失记录下来,不断积累教学经验;
同时经常听取学生良好的合理化建议。
初三数学教学计划【第三篇】
学习目标:认识扇形,会计算弧长和扇形的面积,通过弧长和扇形面积的发现与推导,培养学生运用已有知识探究问题获得新知的能力。
学习重点:弧长和扇形面积公式,准确计算弧长和扇形的面积。
学习难点:运用弧长和扇形的面积公式计算比较复杂图形的面积。
学习过程:
一、创设情境:
如图,某传送带的一个转动轮的半径为10cm.
1.转动轮转一周,传送带上的物品A被传送多少厘米?
2.转动轮转1°,传送带上的物品A被传送多少厘米?
3.转动轮转n°,传送带上的物品A被传送多少厘米?
二、探究弧长和扇形的面积的公式
(一)、弧长公式的推导。
1、请同学们计算半径为,圆心角分别为、、、、所对的弧长。
这里关键是圆心角所对的弧长是多少,进而求出的圆心角所对的弧长。
因此弧长的计算公式为__________________________
练习:已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的长度。
2、扇形的面积。
如图,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形
问:右图中扇形有几个?
同求弧长的思维一样,要求扇形的面积,应思考圆心角为的扇形面积是圆
面积的几分之几?进而求出圆心角的扇形面积。
如果设圆心角是n°的扇形面积为S,圆的半径为r,那么扇形的面积为___ .
因此扇形面积的计算公式为:———————— 或 ——————————
练习:
1、如果扇形的圆心角是230°,那么这个扇形面积等于这个扇形所在圆面积的____________;
2、扇形的面积是它所在圆的面积的,这个扇形的圆心角的度数是_________°.
3、扇形的面积是S,它的半径是r,这个扇形的弧长是_____________。
4、见课本P147练习:1、2、3
三、例题讲解
例1、已知如图,在以O为圆心的两个同心圆中,大圆的弦AB是小圆的切线,C为切点。设弦AB的长为d,圆环面积S与d之间有怎样的数量关系?
例2、如图,正三角形ABC的边长为a,分别以A、B、C为圆心,为半径的圆两两相切于O1、O2、O3。求围成的图形面积(图中阴影部分)
变式练习:
如图,正三角形ABC的边长为2,分别以A、B、C为圆心,1为半径画弧,与△ABC的内切圆O围成的图形为图中阴影部分。求阴影。
例3、如图,正方形的边长为a,以各边为直径在正方形内作半圆,围成的图形(阴影部分)的面积。
例4、如图,扇形AOB的圆心角为直角,边长为1的正方形OCDE的顶点C,E,D分别在OA,OB,AB上,过点A作AF⊥ED,交ED的延长线于点F,求图中阴影部分的面积。
弧长及扇形的面积教学计划指导思想就为大家介绍到这里,希望对你有所帮助。
初三数学教学计划【第四篇】
学习目标
1、了解整式方程和一元二次方程的概念 。
2. 知道一元二次方程的一般形式,会把一元二次方程化成一般形式。
3、通过本节课引入的教学,初步培养学生的数学来源于实践又反过来作用于实践的辨证唯物主义观点,激发学生学习数学的兴趣。
重点、难点
重点:一元二次方程的概念和它的一般形式。
难点:对一元二次方程的一般形式的正确理解及其各项系数的确定
学习过程
一、
知识回顾
1、什么是整式方程?_什么是-元二次方程呢?现在我们来观察上面这个方程:它的左右两边都是关于未知数的整式,这样的方程叫做整式方程。就这一点来说它与一元一次方程没有什么区别、也就是说一元二次方程首先必须是一个整式方程,但是一个整式方程未必就是一个一元二次方程、这还取决于未知数的最高次数是几。如果方程未知数的最高次数是2、这样的整式方程叫做一元二次方程。
2、指出下列方程那些是一元二次方程:那些是一元一次方程?
(1) 3x十2=5x-3
(2) x2=4
(3) (x十3)(3xo4)=(x十2)2;
(4) (x-1)(x-2)=x2十8;
以上是 一元二次方程的为: ___________ 以上是 一元一次方程的为________
二、
探究新知[一]
1、一元二次方程的一般形式是( )
1)。提问a=0时方程还是一无二次方程吗?为什么?(如果a=0、b≠ 0 就成了一元一次方程了)
2)。方程中ax2、bx、c各项的名称及a、b的系数名称各是什么?
3)。强调:一元二次方程的一般形式中"="的左边最多三项、其中一次项、常数项可以不出现、但二次项必须存在、而且左边通常按x的降幂排列:特别注意的是"="的右边必须整理成0.
探究新知(二)
1、说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x 2十3x十2=O ___________
(2)x 2-3x十4=0; __________
(3)3x 2-5=0 ____________
(4)4x 2十3x-2=0; _________
(5)3x 2-5=0; ________
(6)6x 2-x=0. _______
2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x -2=3-7x; (2)3x(x-1)=2(x十2)-4;
(3) (3x十2) 2=4(x-3) 2
[学以致用:]
强化概念:
1. 说出下列一元二次方程的二次项系数、一次项系数、常数项:
(1)x2十3x十2=O ______
(2)x2-3x十4=0;_______
(3) 3x2-5=0 _____________
(4)4x2十3x-2=0;____________
(5)3x2-5=0______________
(6)6x2-x=0________
2、把下列方程先化成二元二次方程的一般形式,再写出它的二次项系数、一次项系数、常数项:
(1)6x2=3-7x
(2)3x(x-1)=2(x十2)-4
(3)(3x十2)2=4(x-3)2
[知识总结:]
(1) 什么是一元二次方程?是一元二次方程满足哪几个条件?
(2) 要知道一元二次方程的一般形式{ax2十bx十c=0(a≠0)}并且注意一元二次方程的一般形式中"="的左边最多几项、其中( )可以不出现、但( )必须存在。特别注意的是"="的右边必须整理成( );
(3) 要很熟练地说出随便一个一元二次方程中一二次项、一次项、常数项:二次项系数、一次项系数。如:(3x十2) 2=4(x-3)____________
诊断检测题一:
1、一元二次方程的一般形式是_________,其中_____是二次项,____是一次项,_______是常数项。
2、方程(3x-7)(2x+4)=4化为一般形式为_____,其中二次项系数为_____,一次项系数为_______.
3、方程mx2+5x+n=0一定是( )。
A.一元二次方程 B.一元一次方程
C.整式方程 D.关于x的一元二次方程
4、关于x的方程(m+1)x2+2mx-3=0是一元二次方程,则m的取值范围是( )
A.任意实数 B. m≠-1 C. m>1 D. m>0
5、方程:3X-1=0;3X2-1=0;2X2-1=(X-1)(X-2);
3X2+Y=2X那些是一元二次方程?
6、把下列方程化成一般形式,且指出其二次项,一次项和常数项
(1)2x(x-5)=3-x (2) (2x-1)(x+5)=6x
诊断检测题二:
1、方程 的二次项系数是 ,一次项系数是 ,常数项是 .
2、把一元二次方程 化成二次项系数大于零的一般式是 ,其中二次项系数是 ,一次项的系数是 ,常数项是 ;
3、一元二次方程 的一个根是3,则 ;
4. 是实数,且 ,则 的值是 .
5、关于 的方程 是一元二次方程,则 .
6、方程:① ② ③ ④ 中一元二次程是 ( )
A. ①和② B. ②和③ C. ③和④ D. ①和③
上一篇:大班上学期教学计划优秀5篇
下一篇:家长寄语怎么写优秀4篇