数据挖掘论文汇总4篇

网友 分享 时间:

【序言】由三一刀客最美丽的网友为您整理分享的“数据挖掘论文汇总4篇”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

数据挖掘论文【第一篇】

摘要:随着科学技术的不断发展,计算机的使用也愈来愈广泛,他已经发展到各个行业,现如今保险行业也就相应的业务引进了计算机业务系统,而在20xx年8月,我国也出台了《国务院关于加快发展现代保险服务业的若干意见》这一举措的有效实施,从政策上为保险行业的快速发展提供相应了保障。而如何在这些被积累下来的宝贵数据中,分析挖掘出新的商机及财富,就成为了我国当前保险行业发展的重要突破口。本篇文章就从数据挖掘技术的应用方面、概念、必要性,以及方法手段进行了深入探讨与分析其对财产保险应用的意义。

关键词:数据挖掘技术;财产保险;应用;分析

在最近几年中,我国对于保险行业给予了高度的关注与重视并出台了许多与之相对应的相关政策,这些政策的发行对于我国的保险行业带来的极大程度的发展空间。而我国的保险行业也开始了转型,正在从粗放型经营向集约化经营管理进行过度,最明显的改变就是之前只注重新客户的开发而忘记顾忌老客户的需求与发展,但是现在是同时注重新老客户的需求与发展,从根本上实现“两手抓”的政策,所以这种新的形式背景下,计算机中保险行业所留的数据就成为极为重要的挖掘资源。

一、解析数据挖掘技术在财产保险分析中的应用

(一)提升财险客户服务能力

对于任何一个公司来说没有客户所有的产品经营都是纸上谈兵,这对于服务行业的财产保险公司更是如此,所以对此所以财产保险行业就面临着转型升级的事情财产行业的转型就意味着面临着面向客户的服务质量的提升。在现如今的经济情况下,保险消费者对于保险行业知识的了解日益增加,保险意识也是越发的加强。客户对于保险行业也出现了个性化与差异化的需求。从这里就要求保险公司通过数据挖掘技术对客户的需求进行更深一层的分析与探索,通过探究与分析的结果明确而客户的需要,并为有更高需求的客户提供更适合他的保险产品,从而提高业务服务水平,吸引更多的优质客源,来增强市场的竞争力。例如,在对客户进行细分的时候,可以通过数据挖掘技术中的“二八定律”,对客户进行细分。通过细分得出结果,参照数据根据每个客户群体的风险偏好、特点以及需求为他们量身定制适合他们自身的新产品,并制定对应适合的费照新差旅费管理办法正确规范填写市内交通补助、伙食补助、城市间交通费、和住宿费金额。并填写上合计金额,不得出现多报的行为,从而提高差旅费报销工作的质量。

(二)风险管理和合规经营

每个保险公司的生命底线就是合规经营以及对风险的管理,所以每个保险公司必须在运营生产中严格的遵守国家的法律法规,不许做出违反法律底线的事情,而风险管理对于保险公司来说具有两层含义,其实并不简单,一方面是需要对于企业自身的风险进行管理;另一方面是对于客户所带来的风险进行管理。对于保险公司来说这两方面的风险是相互作用、相辅相成的,第一个方面的风险管理出现问题后者的风险管理就会成为空谈,反之第二方面的风险管理没有得到很好的管理,极大可能会引起前者管理出现问题。而恰恰数据挖掘技术的应用,就可以为财产保险企业规避风险起到很大的帮助。保险公司可以以计算机为使用的工具,通过数据挖掘的技术,可以对数据内大量的信息进行查找并比对分析,高效的识别出在计算机内不符合正常业务逻辑的数据,这样管理者就可以及时就这些风险数据和业务漏洞进行监测与管控,以减少违法乱纪的事情发生,逐步消除或减少隐藏的风险。保障保险业健康有序的发展,为市场经济持续健康的进一步发展保驾护航。

(三)开发新产品

新的保险产品的开发对于增强保险公司的公司收益、内容、满足消费者的需求以及竞争力等方面起着重要的作用,这也是经营保险公司的首要内容。新产品的开发是指保险公司针对当前市场的需求、想要达到的效果与自身情况相结合的产物,而在原有的产品上加以重新的组合与设计的创造与改良,来满足市场的需求,进而提高公司自身的竞争力的过程与行为。后者自不必说,基于我国财产保险公司数据库信息方面已经积累了很多,而后通过对信息的数据进行发掘,使实现新产品的开发成为可能。譬如,通过数据挖掘技术,我们可以使用现有产品进行进一步的完善、修正或者拆分、组合的,使其变成一全新的保险产品,他会更接近客户的需求,满足客户的真实所需,同时也能够增加市场的销量,增强市场竞争力。就以原有的普通财产保险为例子,在保险有效期内未出现任何对客户的产才造成损失的情况下,客户所缴纳的保险费用是不予以退还的,在财产保险的有效期过后,客户所缴纳的保险费是由保险公司所拥有的。这样的保险产品是不被大多数客户所看好与接受的,即使有客户在第一次购买了此保险,但之后是不会在对本产品进行第二次的投资的。而现在通过数据挖掘的技术,保险公司可以根据对客户信息的了解进行分析,保险公司推出了一款新的家庭财产两全保险保险,这是一种全新的保险类别。全新的家庭财产保险,他所需要交纳的是保险储备金,比如每份保险金额为50000元的家庭财产两全保险,则保险储金为5000元,投保人必须根据保险金额一次性交纳保险储备金,保险人可以将保险储备金的利息作为保险费。在保险期满后,无论是不是在保险期内发生赔付的情况,保险公司都会将保险人的全部的保险储金如数退还。自从出现了这种投保方式,客户的接受度得到了大大的提高,全新的家庭财产保险,一方面使保险人保险中得到了应得的利益,另一方面投保人的财产也得到了保险,从而在市场的销售份额上面也得到了迅速提升。

二、保险业数据挖掘技术及应用的必要性

(一)保险业数据挖掘技术的含义

什么是保险行业的数据挖掘技术,就是从客户管理的角度出发,针对保险行业数据库系统内大量的保险单,对客户的信用数据进行属性变量提取,进而采用自动化或半自动化等多种挖掘技巧和方法来对客户的数据进行分析,找到潜在的有价值的信息。

(二)数据挖掘的过程及方法

数据挖掘是一个跨越多种学科的交叉技术,主要的用途是利用各种数据为商业上存在的问题提供切实可行的方法与数据。数据挖掘的过程有以下几个步骤:业务理解→数据准备→数据理解→构建模型→测试设计→做出评价→实施应用。在数据挖掘方面有三个常用的方法:DM、SEMMA以及CRISP等分析方法。同时我们需要根据实际情况来运用数据挖掘技术,选择最适当的方法,要想将数据挖掘技术达到最佳的效果必须针对具体的流程做出相应的调节。

(三)保险行业应用数据挖掘技术的必要性

在保险行业的运营中,常常会出现一下的几个问题:例如,细分客户的问题:对于不同的社会收入阶层、不同年龄段、不同的行业的客户,该怎么样去确定其的保险金额呢?客户的成长问题:如何把握时机对客户进行交叉销售;险种关联分析问题:在对购买某种保险的客户进行分析与探查,观察其是否在同一时间购买另一种保险产品,客户的获取问题:如何在付出最小的成本获得最有价值的客户的挽留及索赔优化的问题:如何对索赔受理的过程进行优化,挽留住有价值的投保人。保险公司在完成数据的汇总后,所获取的业务及大量客户信息,不过是对公司当前所处的市场环境、企业经营情况及客户基本资料的记录及反映。而进行数据集中的信息系统,也只能是对数据库中的这部分数据进行简单的操作处理,并不能从中发现并提取这些数据中蕴含的具有深层次价值的信息。所以,如若想在决策层面给出解决答案,是不可能实现的。而如果采用数据挖掘技术来对数据库中所存在的大量的数据进行高水平而深层次的分析,就能够为实现保险公司的决策及科学经营提供切实可行的依据,因此此技术的出现从而得到了许多保险公司的应用与重视。

三、结论

我国经济的发展正在向新常态的方向进行转变,而我国财产保险市场的竞争也日益激烈。为了面对这些挑战,各个保险公司都复出了努力在积极的面向转型,由传统的粗放式经营向集约化经营的方式进行过度,面向客户的营销模式也是在这之中产生出来的。在这种转型过度的过程中,财产保险公司对于数据挖掘技术进行充分的利用,使公司的风险管理能力、产品创新能力经营能力、盈利能力、客户服务能力、和业务发展潜力都得到了全面的大幅度提升。在对我国经济建设的繁荣以及促进财产保险公司自身的长远发展,都做出了不可磨灭的贡献,也是对国家的号召积极的响应,进而对市场经济持续发展也做出了不少的贡献。

参考文献:

[1]高文文。数据挖掘技术在财产保险分析中的应用[D]。河北科技大学,20xx.

[2]杨杉,何跃。数据仓库和数据挖掘技术在保险公司中的应用[J]。计算机技术与发展,20xx.

[3]葛春燕。数据挖掘技术在保险公司客户评估中的应用研究[J]。软件,20xx.

[4]陈庆文。数据挖掘在财产保险公司应用研究——以人保财险公司为例[D]。对外经济贸易大学,20xx.

数据挖掘论文【第二篇】

摘 要:高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技

关键词:客户关系管理毕业论文

高度开放的中国金融市场,特别是中国银行业市场受到日趋激烈的国外银行冲击和挑战,大多数银行企业都在构建以客户为中心的客户关系管理体系,这一经营体系理念的构建,不仅仅能提高企业的知名度和顾客的满意度,而且能提高企业的经济效益。但是,随着网络技术和信息技术的发展,客户关系管理如何能结合数据挖掘技术和数据仓库技术,增强企业的核心竞争力已经成为企业亟待解决的问题。因为,企业的数据挖掘技术的运用能够解决客户的矛盾,为客户设计独立的、拥有个性化的数据产品和数据服务,能够真正意义上以客户为核心,防范企业风险,创造企业财富。

关键词:客户关系管理毕业论文

一、数据挖掘技术与客户关系管理两者的联系

随着时代的发展,银行客户关系管理的发展已经越来越依赖数据挖掘技术,而数据挖掘技术是在数据仓库技术的基础上应运而生的,两者有机的结合能够收集和处理大量的客户数据,通过数据类型与数据特征,进行整合,挖掘具有特殊意义的潜在客户和消费群体,能够观察市场变化趋势,这样的技术在国外的银行业的客户关系管理广泛使用。而作为国内的银行企业,受到国外银行业市场的大幅度冲击,显得有些捉襟见肘,面对大量的数据与快速发展的互联网金融体系的冲击,银行业缺乏数据分析和存储功能,往往造成数据的流逝,特别是在数据的智能预测与客户关系管理还处于初步阶段。我国的银行业如何能更完善的建立客户关系管理体系与数据挖掘技术相互融合,这样才能使得企业获得更强的企业核心竞争力。

二、数据挖掘技术在企业客户关系管理实行中存在的问题

现今,我国的金融业发展存在着数据数量大,数据信息混乱等问题,无法结合客户关系管理的需要,建立统一而行之有效的数据归纳,并以客户为中心实行客户关系管理。

1、客户信息不健全

在如今的银行企业,虽然已经实行实名制户籍管理制度,但由于实行的年头比较短,特别是以前的数据匮乏。重点体现在,银行的客户信息采集主要是姓名和身份证号码,而对于客户的职业、学历等相关信息一概不知,极大的影响了客户关系管理体系的构建。另外,数据还不能统一和兼容,每个系统都是独立的系统,比如:信贷系统、储蓄系统全部分离。这样存在交叉、就不能掌握出到底拥有多少客户,特别是那些需要服务的目标客户,无法享受到银行给予的高质量的优质服务。

2、数据集中带来的差异化的忧虑

以客户为中心的客户关系管理体系,是建立在客户差异化服务的基础上的,而作为银行大多数以数据集中,全部有总行分配,这样不仅不利于企业的差异化服务,给顾客提供优质得到个性化业务,同时,分行也很难对挖掘潜在客户和分析客户成分提供一手的数据,损失客户的利益,做到数据集中,往往是不明智的选择。

3、经营管理存在弊端

从组织结构上,我国的银行体系设置机构庞杂,管理人员与生产服务人员脱节现象极其普遍,管理人员不懂业务,只是一味的抓市场,而没有有效的营销手段,更别说以市场为导向,以客户为核心,建立客户关系管理体系。大多数的人完全是靠关系而非真正意义上靠能力,另外,业务流程繁琐,不利于客户享受更多的星级待遇,这与数据发掘的运用背道而驰,很难体现出客户关系管理的价值。

三、数据挖掘技术在企业的应用和实施

如何能更好的利用数据挖掘技术与客户关系管理进行合理的搭配和结合是现今我们面临的最大问题。所有我们对客户信息进行分析,利用模糊聚类分析方法对客户进行分类,通过建立个性化的信息服务体系,真正意义的提高客户的价值。

1、优化客户服务

以客户为中心提高服务质量是银行发展的根源。要利用数据挖掘技术的优势,发现信贷趋势,及时掌握客户的需求,为客户提高网上服务,网上交易,网上查询等功能,高度体现互联网的作用,动态挖掘数据,通过智能化的信贷服务,拓宽银行业务水平,保证客户的满意度。

2、利用数据挖掘技术建立多渠道客户服务系统

利用数据挖掘技术整合银行业务和营销环节为客户提供综合性的服务。采用不同的渠道实现信息共享,针对目标客户推荐银行新产品,拓宽新领域,告别传统的柜台服务体系,实行互联网与柜台体系相结合的多渠道服务媒介体系。优化客户关系管理理念,推进营销战略的执行。提高企业的美誉度。

四、数据挖掘技术是银行企业客户关系管理体系构建的基础

随着信息技术的不断发展,网络技术的快速推进,客户关系管理体系要紧跟时代潮流,紧密围绕客户为中心,利用信息优势,自动获取客户需求,打造出更多的个性化、差异化客户服务理念,使得为企业核心竞争能力得到真正意义的提高。

数据挖掘论文【第三篇】

摘要:数据挖掘是一种特殊的数据分析过程,其不仅在功能上具有多样性,同时还具有着自动化、智能化处理以及抽象化分析判断的特点,对于计算机犯罪案件中的信息取证有着非常大的帮助。本文结合数据挖掘技术的概念与功能,对其在计算机犯罪取证中的应用进行了分析。

关键词:数据挖掘技术;计算机;犯罪取证

随着信息技术与互联网的不断普及,计算机犯罪案件变得越来越多,同时由于计算机犯罪的隐蔽性、复杂性特点,案件侦破工作也具有着相当的难度,而数据挖掘技术不仅能够对计算机犯罪案件中的原始数据进行分析并提取出有效信息,同时还能够实现与其他案件的对比,而这些对于计算机犯罪案件的侦破都是十分有利的。

1数据挖掘技术的功能与应用分析

数据挖掘技术的概念

数据挖掘技术是针对当前信息时代下海量的网络数据信息而言的,简单来说,就是从大量的、不完全的、有噪声的、模糊的随机数据中对潜在的有效知识进行自动提取,从而为判断决策提供有利的信息支持。同时,从数据挖掘所能够的得到的知识来看,主要可以分为广义型知识、分类型知识、关联性知识、预测性知识以及离型知识几种。

数据挖掘技术的功能

根据数据挖掘技术所能够提取的不同类型知识,数据挖掘技术也可以在此基础上进行功能分类,如关联分析、聚类分析、孤立点分析、时间序列分析以及分类预测等都是数据挖掘技术的重要功能之一,而其中又以关联分析与分类预测最为主要。大量的数据中存在着多个项集,各个项集之间的取值往往存在着一定的规律性,而关联分析则正是利用这一点,对各项集之间的关联关系进行挖掘,找到数据间隐藏的关联网,主要算法有FP-Growth算法、Apriori算法等。在计算机犯罪取证中,可以先对犯罪案件中的特征与行为进行深度的挖掘,从而明确其中所存在的联系,同时,在获得审计数据后,就可以对其中的审计信息进行整理并中存入到数据库中进行再次分析,从而达到案件树立的效果,这样,就能够清晰的判断出案件中的行为是否具有犯罪特征[1]。而分类分析则是对现有数据进行分类整理,以明确所获得数据中的相关性的一种数据挖掘功能。在分类分析的过程中,已知数据会被分为不同的数据组,并按★★照具体的数据属性进行明确分类,之后再通过对分组中数据属性的具体分析,最终就可以得到数据属性模型。在计算机犯罪案件中,可以将按照这种数据分类、分析的方法得到案件的数据属性模型,之后将这一数据属性模型与其他案件的数据属性模型进行对比,这样就能够判断嫌疑人是否在作案动机、发生规律以及具体特征等方面与其他案件模型相符,也就是说,一旦这一案件的数据模型属性与其他案件的数据模型属性大多相符,那么这些数据就可以被确定为犯罪证据。此外,在不同案件间的共性与差异的基础上,分类分析还可以实现对于未知数据信息或类似数据信息的有效预测,这对于计算机犯罪案件的处理也是很有帮助的。此外,数据挖掘分类预测功能的实现主要依赖决策树、支持向量机、VSM、Logisitic回归、朴素贝叶斯等几种,这些算法各有优劣,在实际应用中需要根据案件的实际情况进行选择,例如支持向量机具有很高的分类正确率,因此适合用于特征为线性不可分的案件,而决策树更容易理解与解释。

2数据挖掘技术在计算机犯罪取证中的具体应用思路

对于数据挖掘技术,目前的计算机犯罪取证工作并未形成一个明确而统一的应用步骤,因此,我们可以根据数据挖掘技术的特征与具体功能,对数据挖掘技术在计算机犯罪取证中的应用提供一个较为可行的具体思路[2]。首先,当案件发生后,一般能够获取到海量的原始数据,面对这些数据,可以利用FP-Growth算法、Apriori算法等算法进行关联分析,找到案件相关的潜在有用信息,如犯罪嫌疑人的犯罪动机、案发时间、作案嫌疑人的基本信息等等。在获取这些基本信息后,虽然能够对案件的基本特征有一定的了解,但犯罪嫌疑人却难以通过这些简单的信息进行确定,因此还需利用决策树、支持向量机等算法进行分类预测分析,通过对原始信息的准确分类,可以得到案件的犯罪行为模式(数据属性模型),而通过与其他案件犯罪行为模式的对比,就能够对犯罪嫌疑人的具体特征进行进一步的预测,如经常活动的场所、行为习惯、分布区域等,从而缩小犯罪嫌疑人的锁定范围,为案件侦破工作带来巨大帮助。此外,在计算机犯罪案件处理完毕后,所建立的嫌疑人犯罪行为模式以及通过关联分析、分类预测分析得到的案件信息仍具有着很高的利用价值,因此不仅需要将这些信息存入到专门的数据库中,同时还要根据案件的结果对数据进行再次分析与修正,并做好犯罪行为模式的分类与标记工作,为之后的案件侦破工作提供更加丰富、详细的数据参考。

3结束语

总而言之,数据挖掘技术自计算机犯罪取证中的应用是借助以各种算法为基础的关联、分类预测功能来实现的,而随着技术的不断提升以及数据库中的犯罪行为模式会不断得到完善,在未来数据挖掘技术所能够起到的作用也必将越来越大。

参考文献

[1]李艳花。数据挖掘在计算机动态取证技术中的应用[J]。信息与电脑(理论版),20xx(02):174-176.

作者:周永杰 单位:河南警察学院信息安全系

数据挖掘论文【第四篇】

摘 要:数据挖掘技术在各行业都有广泛运用,是一种新兴信息技术。而在线考试系统中存在着很多的数据信息,数据挖掘技在在线考试系统有着重要的意义,和良好的应用前景,从而在众多技术中脱颖而出。本文从对数据挖掘技术的初步了解,简述数据挖掘技术在在线考试系统中成绩分析,以及配合成绩分析,完善教学。

关键词:数据挖掘技术;在线考试;成绩分析 ;完善教学

随着计算机网络技术的快速发展,计算机辅助教育的不断普及,在线考试是一种利用网络技术的重要辅助教育手段,其改革有着重要的意义。数据挖掘技术作为一种新兴的信息技术,其包括了人工智能、数据库、统计学等学科的内容,是一门综合性的技术。这种技术的主要特点是对数据库中大量的数据进行抽取、转换和分析,从中提取出能够对教师有作用的关键性数据。将其运用于在线考试系统中,能够很好的处理在线考试中涉及到的数据,让在线考试的实用性和高效性得到进一步的增强,帮助教师更加快速、完整的统计考试信息,完善教学。

1.初步了解数据挖掘技术

数据挖掘技术是从大量数据中"挖掘"出对使用者有用的知识,即从大量的、随机的、有噪声的、模糊的、不完全的实际应用数据中,"挖掘"出隐含在其中但人们事先却不知道的,而又是对人们潜在有用的信息与知识的整个过程。

目前主要的商业数据挖掘系统有SAS公司的Enterprise Miner,SPSS公司的Clementine,Sybas公司的Warehouse Studio,MinerSGI公司的Mineset,RuleQuest Research公司的See5,IBM公司的Intelligent,还有 CoverStory, Knowledge Discovery,Quest,EXPLORA, DBMiner,Workbench等。

2.数据挖掘在在线考试中的主要任务

数据分类

数据挖掘技术通过对数据库中的数据进行分析,把数据按照相似性归纳成若干类别,然后做出分类,并能够为每一个类别都做出一个准确的描述,挖掘出分类的规则或建立一个分类模型。

数据关联分析

数据库中的数据关联是一项非常重要,并可以发现的知识。数据关联就是两组或两组以上的数据之间有着某种规律性的联系。数据关联分析的作用就是找出数据库中隐藏的联系,从中得到一些对学校教学工作管理者有用的信息。就像是在购物中,就可以通过顾客的购买物品的联系,从中得到顾客的购买习惯。

预测

预测是根据已经得到的数据,从而对未来的情况做出一个可能性的分析。数据挖掘技术能自动在大型的数据库中做出一个较为准确的分析。就像是在市场投资中,可以通过各种商品促销的数据来做出一个未来商品的促销走势。从而在投资中得到最大的回报。

3.数据挖掘的方法

数据挖掘技术融合了多个学科、多个领域的知识与技术,因此数据挖掘的方法也呈现出很多种类的形式。就目前的统计分析类的数据挖掘技术的角度来讲,光统计分析技术中所用到的数据挖掘模型就回归分析、逻辑回归分析、有线性分析、非线性分析、单变量分析、多变量分析、最近邻算法、最近序列分析、聚类分析和时间序列分析等多种方法。数据挖掘技术利用这些方法对那些异常形式的数据进行检查,然后通过各种数据模型和统计模型对这些数据来进行解释,并从这些数据中找出隐藏在其中的商业机会和市场规律。另外还有知识发现类数据挖掘技术,这种和统计分析类的数据挖掘技术完全不同,其中包括了支持向量机、人工神经元网络、遗传算法、决策树、粗糙集、关联顺序和规则发现等多种方法。

4.数据挖掘在考试成绩分析中的几点应用

运用关联规则分析教师的年龄对学生考试成绩的影响

数据挖掘技术中的关联分析在教学分析中,是一种使用频繁,行之有效的方法,它能挖掘出大量数据中项集之间之间有意义的关联联系,帮助知道教师的教学过程。例如在如今的一些高职院校中,就往往会把学生的英语四六级过级率,计算机等级等,以这些为依据来评价教师的教学效果。将数据挖掘技术中的关联规则运用于考试的成绩分析当中,就能够挖掘出一些对学生过级率产生影响的因素,对教师的教学过程进行重要的指导,让教师的教学效率更高,作用更强。

还可以通过关联规则算法,先设定一个最小可信度和支持度,得到初步的关联规则,根据相关规则,分析出教师的组成结构和过级率的影响,从来进行教师队伍的结构调整,让教师队伍更加合理。

采用分类算法探讨对考试成绩有影响的因素

数据挖掘技术中的分类算法就是对一组对象或一个事件进行归类,然后通过这些数据,可以进行分类模型的建立和未来的预测。分类算法可以进行考试中得到的数据进行分类,然后通过学生的一些基本情况进行探讨一些对考试成绩有影响的因素。分类算法可以用一下步骤实施:

数据采集

这种方法首先要进行数据采集,需要这几方面的数据,学生基本信息(姓名、性别、学号、籍贯、所属院系、专业、班级等)、学生调查信息(比如学习前的知识掌握情况、学习兴趣、课堂学习效果、课后复习时间量等)、成绩(学生平常学习成绩,平常考试成绩,各种大型考试成绩等)、学生多次考试中出现的易错点(本次考试中出现的易错点,以往考试中出现的易错点)

数据预处理

(1)数据集成。把数据采集过程中得到的多种信息,利用数据挖掘技术中的数据库技术生产相应的学生考试成绩分析基本数据库。(2)数据清理。在学生成绩分析数据库中,肯定会出现一些情况缺失,对于这些空缺处,就需要使用数据清理技术来进行这些数据库中数据的填补遗漏。例如,可以采用忽略元组的方法来删除那些没有参加考试的学生考试数据已经在学生填写的调查数据中村中的空缺项。(3)数据转换。数据转换主要功能是进行进行数据的离散化操作。在这个过程中可以根据实际需要进行分类,比如把考试成绩从0~59的分到较差的一类,将60到80分为中等类,81到100分为优秀等。(4)数据消减。数据消减的功能就是把所需挖掘的数据库,在消减的过程又不能影响到最终的数据挖掘结果。比如在分析学生的基本学习情况的影响因素情况中,学生信息表中中出现的字段很多,可以选择性的删除班别、籍贯等引述,形成一份新的学生基本成绩分析数据表。

利用数据挖掘技术,得出结论

通过数据挖掘技术在在线考试中的应用,得出这些学生数据的相关分析,比如说学生考试中的易错点在什么地方,学生考试成绩的自身原因,学生考试成绩的环境原因,教师队伍的搭配情况等等,从中得出如何调整学校教学资源,教师的教学方案调整等等,从而完善学校对学生的教学。

5.结语

数据挖掘技术在社会各行各业中都有一定程度的使用,基于其在数据组织、分析能力、知识发现和信息深层次挖掘的能力,在使用中取得了显著的成效,但数据挖掘技术中还存在着一些问题,例如数据的挖掘算法、预处理、可视化问题、模式识别和解释等等。对于这些问题,学校教学管理工作者要清醒的认识,在在线考试系统中对数据挖掘信息做出合理的使用,让数字挖掘技术在在线考试系统中能够更加有效的发挥其长处,避免其在在线考试系统中的的缺陷。

参考文献:

[1]胡玉荣。基于粗糙集理论的数据挖掘技术在高校学生成绩分析中的作用[J]。荆门职业技术学院学报,20xx,12(22):12.

[2][加]韩家炜,堪博(Kam ber M.) 。数据挖掘:概念与技术(第2版)[M]范明,译。北京:机械工业出版社,20xx.

[3]王洁。《在线考试系统的设计与开发》[J]。山西师范大学学报,20xx(2)。

[4] 王长娥。数据挖掘技术在教育中的应用[J]。计算机与信息技术,20xx(11)

23 46144
");