中国数学家的故事(五则精编5篇
【路引】由阿拉题库网美丽的网友为您整理分享的“中国数学家的故事(五则精编5篇”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
华罗庚的故事1
小时候刻苦学习,然而,华罗庚却被叫去看店(卖棉花的铺子)。
为了一个国际上享有盛誉的我国数有一次,有个妇女去买棉花,华罗庚正在算一个数学题,那个妇女说要包棉花多少钱?然而勤学的华罗庚却没有听见,就把算的答案答了一遍,那个妇女尖叫起来:“怎么这么贵?”,这时的华罗庚才知道有人来买棉花,就说了价格,那妇女便买了一包棉花走了。华罗庚正想坐下来继续算时,才发现:刚才算题目的草纸被妇女带走了。这下可急坏了华罗庚,于是不顾一切地去追,一个黄包师傅看见在国际上享有盛誉的我国现代数学家华罗庚教授。
便让他坐车(因为他们认识),终于追上了,华罗庚不好意思地说:“阿姨,请……请把草纸还给我”,那妇女生气地说:“这可是我花钱买的,可不是你送的”。华罗庚急坏了,于是他说:“要不这样吧!我花钱把它买下来”。正在华罗庚伸手掏钱之时,那妇女好像是被这孩子感动了吧!不仅没要钱还把草纸还给了华罗庚。这时的华罗庚才微微舒了中气,回家后,又计算起来……
以上内容就是差异网为您提供的5篇《中国数学家的故事(五则》,能够帮助到您,是差异网最开心的事情。
中国数学家的小故事2
女数学家王贞仪(1768-1797 ),字德卿,江宁人,是清代学者王锡琛之女,著有《西洋筹算增删》一卷、《重订策算证讹》一卷、《象数窥余》四卷、《术算简存》五卷、《筹算易知》一卷。
从她遗留下来著作可以看出,她是一位从事天文和筹算研究女数学家。算筹,又被称为筹、策、筹策等,有时亦称为算子,是一种棒状计算工具。一般是竹制或木制一批同样长短粗细小棒,也有用金属、玉、骨等质料制成,不用时放在特制算袋或算子筒里,使用时在特制算板、毡或直接在桌上排布。应用“算筹”进行计算方法叫做“筹算”,算筹传入日本称为“算术”。算筹在中国起源甚早,《老子》中有一句“善数者不用筹策”记述,现在所见最早记载是《孙子算经》,至明朝筹算渐渐为珠算所取代。
17世纪初叶,英国数学家纳皮尔发明了一种算筹计算法,明末介绍到我国,也称为“筹算”。清代著名数学家梅文鼎、戴震等人曾加以研究。戴震称其为“策算”。王贞仪也从事研究由西洋传入我国这种筹算,并且写了三卷书向国人介绍西洋筹算。她在著作中对西洋筹算进行增补讲解,使之简易明了。王贞仪介绍纳皮尔算筹乘除法,当时读者认为容易了解,但与当时我国乘除法筹算方法相比,显得较繁杂,因此,数学家们没有使用西洋筹算,一直使用中国筹算法。今天读者把中外筹算乘除法视为老古董,采用是由外国传入笔算四则运算,这种笔算于1903年才开始被使用,故我国与世界接轨使用笔算历史只有100年。
华罗庚的故事3
华罗庚小时候帮助父亲做生意,打算盘、记账。
那时华罗庚站在柜台前,顾客一走就又埋头看书演算起数学题来。
有时入了迷,竟忘了接待顾客,甚至把算题结果当作顾客应付的货款,使顾客吓了一跳。每逢遇到怠慢顾客的事情发生,父亲又气又急,说他念“天书”念呆了,要强行把书烧掉。争执发生时,华罗庚总是死死地抱着书不放。
中国数学家的小故事4
刘徽(生于公元250年左右),是中国数学史上一个非常伟大的数学家,在世界数学史上,也占有杰出的地位.他的杰作《九章算术注》和《海岛算经》,是我国最宝贵的数学遗产。
《九章算术》约成书于东汉之初,共有246个问题的解法.在许多方面:如解联立方程,分数四则运算,正负数运算,几何图形的体积面积计算等,都属于世界先进之列,但因解法比较原始,缺乏必要的证明,而刘徽则对此均作了补充证明.在这些证明中,显示了他在多方面的创造性的贡献.他是世界上最早提出十进小数概念的人,并用十进小数来表示无理数的立方根。在代数方面,他正确地提出了正负数的概念及其加减运算的法则;改进了线性方程组的解法.在几何方面,提出了"割圆术",即将圆周用内接或外切正多边形穷竭的一种求圆面积和圆周长的方法.他利用割圆术科学地求出了圆周率π=的结果。刘徽在割圆术中提出的"割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣",这可视为中国古代极限观念的佳作。
《海岛算经》一书中, 刘徽精心选编了九个测量问题,这些题目的创造性、复杂性和富有代表性,都在当时为西方所瞩目。
刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是我国最早明确主张用逻辑推理的方式来论证数学命题的人。
刘徽的一生是为数学刻苦探求的一生。他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
中国数学家的小故事5
祖冲之(公元429—500年)是我国南北朝时期,河北省涞源县人。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践,终于使他成为我国古代杰出的数学家、天文学家。
祖冲之在数学上的。杰出成就,是关于圆周率的计算。秦汉以前,人们以"径一周三"做为圆周率,这就是"古率"。后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一。直到三国时期,刘徽提出了计算圆周率的科学方法——"割圆术",用圆内接正多边形的周长来逼近圆周长。刘徽计算到圆内接96边形,求得π=,并指出,内接正多边形的边数越多,所求得的π值越精确。祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在与之间。并得出了π分数形式的近似值,取为约率 ,取为密率,其中取六位小数是,它是分子分母在1000以内最接近π值的分数。祖冲之究竟用什么方法得出这一结果,现在无从考查。若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的。祖冲之计算得出的密率,外国数学家获得同样结果,已是一千多年以后的事了。为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率"。