数学学习方法【最新5篇】
【路引】由阿拉题库网美丽的网友为您整理分享的“数学学习方法【最新5篇】”文档资料,以供您学习参考之用,希望这篇范文对您有所帮助,喜欢就复制下载支持吧!
数学知识点【第一篇】
一。定义
1、一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a叫做被开方数。
2、一般地,如果一个数的平方等于a,那么这个数叫做a的平方根或二次方根,求一个数a的平方根的运算,叫做开平方。
3、一般地,如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根。求一个数的立方根的运算,叫做开立方。
4、任何一个有理数都可以写成有限小数或无限循环小数的形式。任何有限小数或无限循环小数也都是有理数。
5、无限不循环小数又叫无理数。
6、有理数和无理数统称实数。
7、数轴上的点与实数一一对应。平面直角坐标系中与有序实数对之间也是一一对应的。
二。重点
1、平方与开平方互为逆运算。
2、正数的平方根有两个,它们互为相反数,其中正的平方根就是这个数的算术平方根。
3、当被开方数的小数点向右每移动两位,它的算术平方根的小数点就向右移动一位。
4、当被平方数小数点每向右移动三位,它的立方根小数点向右移动一位。
5、数a的相反数是-a[a为任意实数],一个正实数的绝对值是它本身,一个负实数的绝对值是它的相反数;0的绝对值是0.
三。注意
1、被开方数一定是非负数。
,1的算术平方根是它本身;0的平方根是0,负数没有平方根;正数的立方根是正数,负数的立方根是负数,0的立方根是0.
3、带根号的无理数的整数倍或几分之几仍是无理数;带根号的数若开之后是有理数则是有理数;任何一个有理数都能写成分数的形式。
以上就是数学网为大家提供的初二数学知识点总结:实数希望能对考生产生帮助,更多资料请咨询数学网中考频道。
关于数学的学习方法【第二篇】
基础理论学起:在学习数学前首先应该从最基础的东西开始学习,因为数学的每一个理论或者每一个环节都是以前一个基础理论为前提的,是环环相扣的理论链的关系。带着这种观点去学习也就不必去死记硬背一些定理、推理之类的知识了,学习起来自然就显得更加容易了!
避免眼高手低:数学是一门理论联系实际的学习,熟悉、理解基础理论概念只是学好数学的前提,最终的目的还是用于实际的操作中,或者说用于咱们的日常生活中去。所以要勤于做题练习,坚决避免眼高手低的学习态度,“实践是检验真理的唯一标准”,数学也不例外!
四大思维模式:数学体系的四大思维体系:数形结合、函数思想、分类讨论、方程思想。在学习数学过程中要做到已知量和未知量的有机结合,用已知数值通过函数的方式和方程的形式展现出来,在未知待定的情况下,通过分情况的方式加以讨论并解析出问题的不同情况的答案!
培养学习兴趣:俗话说“兴趣是最好的老师”,很多孩子或许天生就有对数学这方面有很大的兴趣,能快乐的学习数学。如果对数学不感兴趣,笔者认为也可以从以下方面加以培养:激发孩子求知欲;增强孩子的自信心;启发孩子的创造力;引导孩子思维多元化。
探索求知精神:做好以上四步,你就能轻轻松松的学好数学了。如何由“好”到“精”呢?这就需要探索求知精神了。每个人对数学知识的求知欲都是不同的,在学习肯定会遇到很多困难,当你对困难的求知欲超过别人的时候,你在精神上就超过了对方,这是一种学习数学的境界!
勤奋成就人才:每一个成功都是三分靠的上天“注定”,而七分靠的还是“打拼”。即使再有头脑,再有数学天赋的人,如果一味的在学习中懒惰,在数学方面也不会有很大的作为;而一些即使平平的人,在勤奋的督促下也能做到一番作为。勤奋是成功的阶梯!
数学知识点【第三篇】
1、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。
2、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。
3、一元一次方程解法的一般步骤:整理方程……去分母……去括号……移项……合并同类项……系数化为1 ……(检验方程的解)。
4、列一元一次方程解应用题:
(1)读题分析法:多用于“和,差,倍,分问题”
仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—————”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程。
(2)画图分析法:多用于“行程问题”
利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础。
11、列方程解应用题的常用公式:
(1)行程问题:距离=速度·时间;
(2)工程问题:工作量=工效·工时;
(3)比率问题:部分=全体·比率;
(4)顺逆流问题:顺流速度=静水速度+水流速度,逆流速度=静水速度—水流速度;
(5)商品价格问题:售价=定价·折·,利润=售价—成本,;
(6)周长、面积、体积问题:C圆=2πR,S圆=πR2,C长方形=2(a+b),S长方形=ab,C正方形=4a,
S正方形=a2,S环形=π(R2—r2),V长方体=abc,V正方体=a3,V圆柱=πR2h,V圆锥= πR2h。
本章内容是代数学的核心,也是所有代数方程的基础。丰富多彩的问题情境和解决问题的快乐很容易激起学生对数学的乐趣,所以要注意引导学生从身边的问题研究起,进行有效的数学活动和合作交流,让学生在主动学习、探究学习的过程中获得知识,提升能力,体会数学思想方法。
数学知识点【第四篇】
柱、锥、台、球的结构特征
空间几何体的三视图和直观图
11三视图:
正视图:从前往后
侧视图:从左往右
俯视图:从上往下
22画三视图的原则:
长对齐、高对齐、宽相等
33直观图:斜二测画法
44斜二测画法的步骤:
(1)。平行于坐标轴的线依然平行于坐标轴;
(2)。平行于y轴的线长度变半,平行于x,z轴的线长度不变;
(3)。画法要写好。
5用斜二测画法画出长方体的步骤:(1)画轴(2)画底面(3)画侧棱(4)成图
空间几何体的表面积与体积
(一)空间几何体的表面积
1棱柱、棱锥的表面积:各个面面积之和
2圆柱的表面积3圆锥的表面积
4圆台的表面积
5球的表面积
(二)空间几何体的体积
1柱体的体积
2锥体的体积
3台体的体积
4球体的体积
高二数学必修二知识点:直线与平面的位置关系
空间点、直线、平面之间的位置关系
1平面含义:平面是无限延展的
2平面的画法及表示
(1)平面的画法:水平放置的平面通常画成一个平行四边形,锐角画成450,且横边画成邻边的2倍长(如图)
(2)平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等。
3三个公理:
(1)公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内
符号表示为
A∈L
B∈L=>Lα
A∈α
B∈α
公理1作用:判断直线是否在平面内
(2)公理2:过不在一条直线上的三点,有且只有一个平面。
符号表示为:A、B、C三点不共线=>有且只有一个平面α,
使A∈α、B∈α、C∈α。
公理2作用:确定一个平面的依据。
(3)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线。
符号表示为:P∈α∩β=>α∩β=L,且P∈L
公理3作用:判定两个平面是否相交的依据
空间中直线与直线之间的位置关系
1空间的两条直线有如下三种关系:
共面直线
相交直线:同一平面内,有且只有一个公共点;
平行直线:同一平面内,没有公共点;
异面直线:不同在任何一个平面内,没有公共点。
2公理4:平行于同一条直线的两条直线互相平行。
符号表示为:设a、b、c是三条直线
a∥b
c∥b
强调:公理4实质上是说平行具有传递性,在平面、空间这个性质都适用。
公理4作用:判断空间两条直线平行的依据。
3等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补
4注意点:
①a与b所成的角的大小只由a、b的相互位置来确定,与O的选择无关,为了简便,点O一般取在两直线中的一条上;
②两条异面直线所成的角θ∈(0,);
③当两条异面直线所成的角是直角时,我们就说这两条异面直线互相垂直,记作a⊥b;
④两条直线互相垂直,有共面垂直与异面垂直两种情形;
⑤计算中,通常把两条异面直线所成的角转化为两条相交直线所成的角。
—空间中直线与平面、平面与平面之间的位置关系
1、直线与平面有三种位置关系:
(1)直线在平面内——有无数个公共点
(2)直线与平面相交——有且只有一个公共点
(3)直线在平面平行——没有公共点
指出:直线与平面相交或平行的情况统称为直线在平面外,可用aα来表示
aαa∩α=Aa∥α
直线、平面平行的判定及其性质
直线与平面平行的判定
1、直线与平面平行的判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。
简记为:线线平行,则线面平行。
符号表示:
aα
bβ=>a∥α
a∥b
平面与平面平行的判定
1、两个平面平行的判定定理:一个平面内的两条交直线与另一个平面平行,则这两个平面平行。
符号表示:
aβ
bβ
a∩b=Pβ∥α
a∥α
b∥α
2、判断两平面平行的方法有三种:
(1)用定义;
(2)判定定理;
(3)垂直于同一条直线的两个平面平行。
—直线与平面、平面与平面平行的性质
1、定理:一条直线与一个平面平行,则过这条直线的任一平面与此平面的交线与该直线平行。
简记为:线面平行则线线平行。
符号表示:
a∥α
aβa∥b
α∩β=b
作用:利用该定理可解决直线间的平行问题。
2、定理:如果两个平面同时与第三个平面相交,那么它们的交线平行。
符号表示:
α∥β
α∩γ=aa∥b
β∩γ=b
作用:可以由平面与平面平行得出直线与直线平行
直线、平面垂直的判定及其性质
直线与平面垂直的判定
1、定义
如果直线L与平面α内的任意一条直线都垂直,我们就说直线L与平面α互相垂直,记作L⊥α,直线L叫做平面α的垂线,平面α叫做直线L的垂面。直线与平面垂直时,它们公共点P叫做垂足。
2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。
注意点:a)定理中的“两条相交直线”这一条件不可忽视;
b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想。
平面与平面垂直的判定
1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形
2、二面角的记法:二面角α-l-β或α-AB-β
3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。
—直线与平面、平面与平面垂直的性质
1、定理:垂直于同一个平面的两条直线平行。
2性质定理:两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。
数学学习方法【第五篇】
一、课后及时回忆
如果等到把课堂内容遗忘得差不多时才复习,就几乎等于重新学习,所以课堂学习的新知识必须及时复习。
可以一个人单独回忆,也可以几个人在一起互相启发,补充回忆。一般按照教师板书的提纲和要领进行,也可以按教材纲目结构进行,从课题到重点内容,再到例题的每部分的细节,循序渐进地进行复习。在复习过程中要不失时机整理笔记,因为整理笔记也是一种有效的复习方法。
二、定期重复巩固
即使是复习过的内容仍须定期巩固,但是复习的次数应随时间的增长而逐步减小,间隔也可以逐渐拉长。可以当天巩固新知识,每周进行周小结,每月进行阶段性总结,期中、期末进行全面系统的学期复习。从内容上看,每课知识即时回顾,每单元进行知识梳理,每章节进行知识归纳总结,必须把相关知识串联在一起,形成知识网络,达到对知识和方法的整体把握。
三、科学合理安排
复习一般可以分为集中复习和分散复习。实验证明,分散复习的效果优于集中复习,特殊情况除外。分散复习,可以把需要识记的材料适当分类,并且与其他的学习或娱乐或休息交替进行,不至于单调使用某种思维方式,形成疲劳。分散复习也应结合各自认知水平,以及识记素材的特点,把握重复次数与间隔时间,并非间隔时间越长越好,而要适合自己的复习规律。
四、重点难点突破
对所学的素材要进行分析、归类,找出重、难点,分清主次。在复习过程中,特别要关注难点及容易造成误解的问题,应分析其关键点和易错点,找出原因,必要时还可以把这类问题进行梳理,记录在一个专题本上,也可以在电脑上做一个重难点“超市”,可随时点击,进行复习。
五、复习效果检测
随着时间的推移,复习的效果会产生变化,有的淡化、有的模糊、有的不准确,到底各环节的内容掌握得如何,需进行效果检测,如:周周练、月月测、单元过关练习、期中考试、期末考试等,都是为了检测学习效果。检测时必须独立,限时完成,保证检测出的效果的真实性,如果存在问题,应该找到错误的根源,并适时采取补救措施进行校正。目前市场上练习册多如牛毛,请在老师的指导下选用。
上一篇:心理健康教育主题班会(4篇)
下一篇:校园社团活动总结精选4篇