小学数学说课稿 小学数学优质说课稿(精编5篇)

网友 分享 时间:

【导言】此例“小学数学说课稿 小学数学优质说课稿(精编5篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

小学数学说课稿1

说教材

本节课是在学生掌握了一般三角形基础知识和初步推论证明的基础上进行学习的,担负着训练学生学会分析证明思路的任务,在培养学生逻辑推理能力方面有着非常重要的作用。等腰三角形两底角相等的性质是今后论证两角相等的的依据之一,等腰三角形底边上的三条主要线段重合的性质是今后论证两条线段相等、两个角相等及两条直线垂直的重要依据,因此在教材中处于非常重要的地位。

说教学目标

知识与能力:探索并掌握等腰三角形性质定理,能运用它们进行有关的论证和计算。理解等腰三角形和等边三角形性质定理之间的联系。

过程与方法:培养学生对命题的抽象概括能力,逐步渗透几何证题的基本思想方法:分析法和综合法。

情感与态度:引导学生进行规律的再发现,培养学生勇于实践、大胆探索的精神。加强学生数学应用意识。

教学重点与难点

重点:等腰三角形的性质定理。难点:等腰三角形三线合一性质的运用

说教法与学法

课堂教学要体现以学生发展为本的精神,因此本堂课我采取了“开放型的探究式”教学模式,从问题提出到问题解决都竭力把参与认知过程的主动权交给学生,使学生全面参与、全员参与、全程参与,真正确立其主体地位。而教师只是作为数学学习的组织者、引导者、合作者,及时地给以引导、点拨、纠正。

说教学过程:

学生的学习过程是在其原有认知基础上的主动建构,因此我依据学生的认知规律将教学过程分为以下五个环节:

教学过程

一、回顾与思考电脑展示人字型屋顶的图像,提问:

1、屋顶设计成了何种几何图形?

2、我们都知道它是一种特殊的三角形,那么它特殊在哪里呢?(两腰相等,是轴对称图形)

3、它的对称轴是哪一条呢?由日常生活中的等腰三角形引出课题,目的在于培养学生从实际问题中抽象出数学问题的能力。同时创造丰富的旧知环境,有利于帮助学生找准新旧知识的连接点,特别是问题3,其实就是等腰三角形三线合一性质的伏笔。除了这些特殊点,等腰三角形还有其它特殊性质吗?这节课我们就要一起来研究等腰三角形的性质(由此引出课题)现代教学论认为,在正式进行发现过程前要让学生对探索的目标、意义认识得十分明确,做好探索的物质准备和精神准备。

二、观察与表达

1、观察猜想请同学们拿出准备好的等腰三角形,与教师一起按照要求,把两腰叠在一起,观察一下你有什么发现。教师用多媒体课件演示等腰三角形ABC叠合情况,请学生思考你能得出哪些结论。

2、得出定理学生回答发现后,教师给予指导,用规范的数学语言进行逐条归纳,得出两个性质定理:

定理1:等腰三角形两底角相等。

定理2:等腰三角形的顶角平分线、底边上的中线和高线互相重合。通过让学生动手操作,观察、猜想,体验知识的发生、发现过程,变灌注知识为学生主动获取知识。

学习内容不再以定论的形式呈现,而是以问题形式间接呈现;学习的心理机制不再是仅仅是同化,而是顺应。

三、了解与探究

3、探索定理

一、(A组口答,B组独立解答)A组:

1、等腰直角三角形的两个锐角各等于几度?

2、若等腰三角形顶角为40度,则它的顶角为几度?

3、若等腰三角形底角为40度,则它的底角为几度?

B组:

1、若等腰三角形一个内角为40度,则它的其余各角为几度?

2、若等腰三角形一个内角为120度,则它的其余各角为几度?

3、一个内角为60度,则它的其余各角为几度?

(A组口答,B组独立解答)由此引出推论:等边三角形各个角都相等,且各个角都等于60°。

二、应用与提高应用举例:如图,某房屋的顶角

∠BAC=120°,过屋顶A的立柱AD⊥BC,屋椽AB=AC,求顶架上的∠B,∠C,∠CAD的度数。

例1:求证等腰三角形两底角平分线相等A

EDBC由于这是个用文字语言叙述的的几何命题,师生共同商讨,将解题过程分为以下几个步骤:①根据命题画出相应的图形,并标出字母②通过分析题设结论,将命题翻译为几何符号语言,写出已知与求证。

③探索证法在寻求证法时启发学生从“已知”、“求证”两方面出发进行思考。从已知出发:

a:由AB=AC联想到什么

b:BD、CE是△ABC的角平分线联想到什么c:由a、b联想到什么d:由a、b、c联想到什么e:由d联想到什么

从求证出发:证明两条线段相等通常用什么方法?(全等三角形)。这两条线段分别在哪两个三角形中?这两个三角形全等吗?如何证明?

本课从居民建筑人字梁结构中抽象出几何问题,通过探索实践活动得出结论,在这里,再将得到的结论应用到实践中,从而解决了人字梁结构中的实际问题。这样既有前后呼应,又体现了“数学来源于生活,应用于生活”的思想,有利于加强学生的数学应用意识。

“证明”的教学所关注的是,对证明基本方法和证明过程的体验,而不是追求所证命题的数量、证明的技巧。因此在例1教学中,有意让学生来确定学习任务与步骤,充分调动其学习积极性。

分析法和综合法是基本的数学思想方法,因此在这里要求学生从两方面都能够思考问题。但这对于刚接触论证几何不久的学生来说,有一定的难度。所以,由教师提出一系列问题,引导学生进行联想。

本题是通过三角形全等来证明两条角平分线相等,而这对全等三角形可是△ABD和△ACE也可是△BCE和△CBD分别用到了公共边和公共角这两对元素,因此在教学过程中将充分利用这一点,组织学生探索证明的不同思路,并进行适当的比较和讨论,有利于开阔学生的视野。

三、心得与体会

通过今天这堂课的研究,我明确了,我的收获与感受有,我还有疑惑之处是。请学生按这一模式进行小结,培养学生学习,总结,学习,反思的良好习惯,同时通过自我的评价来获得成功的快乐,提高学生学习的自信心。

四、说评价

现代数学教学观念要求学生从“学会”向“会学”转变,本课从定理的发现到定理的应用都有意识地营造一个较为自由的空间,让学生→←能主动地去观察、猜测、发现、验证,积极地动手、动口、动脑,使学生在学知识的同时形成方法。整个教学过程突出了三个注重:

1、注重学生参与知识的形成过程,体验应用数学知识解决简单问题的乐趣。

2、注重师生间、同学间的互动协作、共同提高。

3、注重知能统一,让学生在获取知识的同时,掌握方法,灵活应用。

小学数学说课稿2

春意盎然,百花绽放,把我们带进了一个绚丽多彩的季节。瞧!花园里、路边,美丽的鲜花争奇斗艳,开得特别旺盛。每次散步时,孩子们都情不自禁地嚷着:"老师,花儿真美啊!""老师,我喜欢红色的花。"看着孩子们被这些漂亮的花吸引,在那里流连往返,我想何不以此为兴趣点开展活动呢?于是我把花儿渗透到数学活动中,让孩子们在美的熏陶下体验数学活动的乐趣。

1、本次活动主要激发幼儿的好奇心和探究欲望,培养幼儿对科学活动的兴趣。

2、活动过程有趣、形象,利用游戏的形式,抓住小班幼儿的年龄特点,充分调动幼儿主动参与和操作的积极性。

3、整个活动使每个幼儿都有参与的机会,难易适中、动静交替促使不同水平的幼儿在自信心上的发展,获得成功的喜悦。

根据小班幼儿的认知和能力发展水平,我把本节课的教学目标定为:

1、能按照不同特征,将花瓣进行分类、匹配。

2、知道部分与整体的关系,并体验与同伴合作的`快乐。

3、能用不同方式表达鲜花的美丽。

教学重点、难点定为:能根据颜色、大小特征将花瓣进行分类、匹配。

1、六个花骨朵(红、黄、蓝各2个,反面画上大小标记)、幼儿人手一片花瓣。(颜色、大小不一)

2、幼儿操作内容:

第一组:白色花朵若干、油画棒。(中间印有3-5的点子)

第二组:标有大小标记的花心若干,彩色花瓣。

第三组:已画好的中间印有3-5的点子的彩色花朵。

3、音乐(春天来了、找朋友)

这节课的教学对象是小班幼儿。他们年龄小、好动、爱玩、好奇心强,注意力容易分散。根据这一特点,我通过创设情境,组织幼儿在游戏活动中学习为主要形式,以操作演示为主要方法,来集中幼儿的注意力,引起幼儿的学习兴趣。同时在各个不同的教学环节中通过启发引导、自主探索、合作交流,引导幼儿通过自己的学习体验来学习新知识,积极开展本节课的教学活动。

1、操作法:为了激发幼儿的活动兴趣,我采用了操作法,在适当的要求下,发展幼儿动手能力与观察力,体会探究的乐趣。

2、游戏法:"游戏"是低龄幼儿活动的方法,教师在游戏中辅以形象生动的教具、有趣活泼的语言,会使幼儿兴致勃勃,从而寓教寓乐。

1、通过丰富的可操作材料,让幼儿大胆放手操作,以此体验操作的快乐。

2、在有趣的游戏情景中,让幼儿去探索,从而发展幼儿的观察力及学习的欲望。

首先,活动一开始,幼儿扮演美丽的花瓣,在优美的氛围下感受着春天的气息和花的绚烂;其次,让幼儿在找一找、说一说、贴一贴的游戏活动中对颜色、大小有进一步的理解,让他们能在愉快的情境下体验数学活动的快乐;最后,以邀请其余小朋友来欣赏美丽的鲜花来结束整个教学活动。

开始部分:

1、以听音乐唱歌曲《春天来了》导入活动。

2、幼儿以自身为花瓣,慢慢的开花展开活动。

基本部分:根据不同特征,将花瓣进行分类,匹配。

1、按颜色不同进行分类。

2、游戏:找朋友是以找相同颜色的花瓣朋友为主。

3、贴花朵:提供标有大小标记的花心,让幼儿按大小标记、形状匹配相应的花瓣。

4、游戏:花儿朵朵开是装饰花朵、粘贴花瓣的小组活动,以提高幼儿的兴趣度为出发点,更把幼儿对春天的喜爱表现的淋漓尽致。

结束部分:

以邀请其他幼儿来欣赏这些美丽的鲜花来结束整个教学活动。

将今天的操作材料置于"数学区"供幼儿复习巩固操作。

小学数学说课稿3

说教材

异分母分数加减法是五年级下册第五单元一个学习内容。在这个内容之前,学生已掌握了分数的基本性质,学会了约分、通分、分数小数互化的方法,懂得了同分母分数加减法的算理,其中同分母分数加减法的计算方法是本节课最直接的知识起点。本节课的内容又是进一步学习分数加减法混合运算的基础,同时又是本单元的重点。五年级学生已经能理解只有分数单位相同的分数才能相加减的算理,并且已经初步具有用旧知识解决新问题的能力,也就是具有了一定的知识迁移能力。

说学生

异分母分数加减法的法则是:先通分,再按分同母分数加减法的法则进行计算,学生在前一个单元里已经熟练掌握了通分的技能,又在前几节课里学习了同分母分数加减法,明确了分-数单位相同可以直接相加减。因此,对学生而言,作为构成计算法则的两个重要成分都已学过,在这节课,无非是引导学生想到"化异为同",把异分母分数转化为同分母分数来沟通新旧知识,好在学生已从"异分母分数大小比较"里学会了这一招"化异为同"所以在这节课里要求学生再用"化异为同"来解决问题并不难。

说教学目标

1、使学生理解并掌握异分母分数加减法的计算法则,能正确的进行计算。

2、引导学生经历提出问题、自主探究、得出算法、解决问题的过程。从中渗透转化的数学思想,并进一步培养学生养成良好的验算习惯。

受数学与生活的联系,激发学生学习兴趣,并在学习活动中获得积极的,成功的情感体验。

教学重点、难点:

1、重点:理解异分母分数加减法的计算法则。

2、难点:理解异分母分数加减法计算时必须先通分的算理。

教学理念

通过学习新课标,使我明白:数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础上,教学应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助他们在自主探究和合作交流的过程中真正理解和掌握基本的数学知识与技能,数学思想与方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。基于新课标的上述理念,我把本节课的教学流程预设为:创设情境,激趣引入----合作探究,自主建构------巩固内化,拓展创新------回顾总结,完善认知。

教学流程;

(一)创设情境,激趣导入。

设计意图:我创设这个情境的意图首先想体现数学来源与生活,生活中处处有数学的教学理念。其次在这个情境中,给学生提供了一组开放性的学习素材,有利于学生提出问题,自主探究。

在学生列出的4个算式中,其中1/4+1/4是同分母分数的加法,意图是复习同分母分数的加法的计算法则。另外3个是异分母的加法,为接下来新知的探究提供了素材。

(二)尝试研究

这一环节是探究异分母分数加减法的计算法则,是本节课的中心环节,为了突出重点,突破难点,发挥学生的主体作用,我安排这样几个小环节:

1、小组合作

我在3个异分母分数的加法中,先选择了能化成有限小数的1/2+1/4,为学生解题策略多样化创造出更宽阔的思维空间。

2、算法优化

在学生出现了多种解题方法后

(1)化成小数计算

(2)通分计算

(3)画图解决。

作为教师,我们应该为学生创设一种情境:继续选择自己喜欢的方法,独立计算1/2+1/3让学生在运用自己喜欢的方法进行解答中发现,化成小数计算时有一定的局限性,画图解决很麻烦。从而得出:异分母分数加法要先通分,再计算比较合理。

3、验算得出异分母分数减法

你能把自己的计算结果验算一下吗?(学生有的用加法,有的用减法)通过验算这个小环节,自然引出异分母分数的减法,然后让学生通过独立计算,掌握异分母分数的减法的计算方法。

归纳概括出异分母分数加减法计算法则。

(三)、巩固内化,拓展创新。

学生学习新的知识方法后,还必须通过多种形式的练习加以巩固、提高、拓展、创新,形成技能,发展智力。

因为异分母分数加减法最关键是通过通分把异分母转化为同分母,所以我设计的第一个练习是口头填数,化成同分母分数。

2、接下来第二个练习我设计了一个改错题,让学生找出解题过程中的错误,学生会仔细查看每一道题的每一步,并运用所学知识进行改正,有助于巩固正确的解题方法。题中的错误是学生在计算过程中最容易出现的,通达改正练习,引以为戒。学生指出错误后,可要求完整地写出正确的解题过程,以形成正确的概念3、第三个练习我设计了一个发生在学生身边的真实情景,图书连连串信息,变出加减法多道计算题,让学生完整地写出解题过程,集体批改,便于教师掌握反馈信息。

4、第四个练习我设计了两道聪明题,第一题(这组题中,每个分数的分子都是1,每道题分数的分母都是互质数。引导学生计算时,发现规律,寻找捷径,培养学生的思维能力。其解题规律用不等于零的字母表示为①a1+b1=aba+b,a、b为互质数;②a1-b1=abb-a,a

教学过程:

(一)、创设情境,激趣导入

1、师:这次五一长假,陈老师到舟山的普陀山游览了趟。一上码头,我在路标上看到了这样一组信息。

2、出示信息。(幻灯)

码头→前寺前寺→佛顶山步行要21小时乘汽车要41小时乘汽车要41小时坐缆车要31小时3、师:看到这些信息,你可以选择哪种方式到达佛顶山,并用算式表示出来你所需要的时间。

(1)上面这些算式中,哪个算式是我们已经研究过的(1/4+1/4)

(2)这属于哪一类的?(同分母分数加减法)

(3)谁会说说同分母分数加减法的计算方法。(出示幻灯)

(4)同分母分数相加,为什么可以把分子相加,分母不变。(因为分数单位相同)

(5)那另外3组的分数又叫什么呢?(异分母分数)揭示课题

师:XX说的不错,这类题目叫做"异分母分数"今天我们就来研究它们相加减的方法。

(二)、尝试研究

师:我们先来看1/2+1/4这题,请独立思考,你准备用什么方法解答这道题目,需不需要老师或同桌帮忙?然后小组内互相交流一下,看看通过集体的智慧,你们小组可以想出几种不同的方法?(可以使用老师给你们提供的材料)学生操作、交流、反馈

小学数学说课稿4

一、教学内容的说明

《分数的基本性质》一课是五年级下册的一个内容。学习本内容之前,学生已清楚理解分数的意义,明确分数与除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。本课在小学数学学习中起着承前启后、举足轻重的作用,它既与整数除法的商不变性质有着内在的联系,也是后面进一步学习约分、通分、分数计算的基础。

二、学情分析

学生在三年级上学期已经初步认识了分数,知道分数各个部分的名称,会读、写简单的分数,会比较分子是1的分数,以及同分母分数的大小。还学习了简单的同分母分数的加、减法。在本学期又学习了因数、倍数等概念,掌握了2、3、5的倍数的特征,为学习本单元知识打下了基础。

三、教学目标

依据新的《数学课程标准》,为了更好地体现数学学习对学生在数学思考、解决问题以及情感与态度等方面的要求。根据本节课的具体内容并结合学生的实际情况,我制定了以下教学目标:

1.使学生理解与掌握分数的基本性质,能运用它改变分数的分母与分子,而使分数的大小不变。

2.培养学生观察、比较、分析、概括等方面的能力。

3.通过实践活动,鼓励学生动手进行科学的验证,培养其勇于探索,勇于创新的意识。

四、教学重点、难点

教学重点:

理解和掌握分数的基本性质,运用分数的基本性质解决实际问题。

教学难点

学生通过猜想和动手验证,抽象概括出分数的基本性质。

五、教法学法的选择

教法:本着“以学生发展为本”、“以学定教”的思想,按照学生学习的认知规律,在探究分数的基本性质过程中,主要采取学生动手操作、小组讨论、合作探究等方式,引导学生进行比较、观察、分析,充分运用知识迁移的规律,在感知的基础上加以抽象、概括,进行归纳整理,采取迁移教学法、引导发现法组织教学。

学法:有效的数学学习活动,不能单纯模仿与记忆,动手实践、自主探索与合作交流是学生学习数学的重要方式。在学习例题的过程中学生主要采用自学尝试法,独立自主地学习将分数化成分母不同但大小相同的分数,并尝试完成做一做,达到检验自学的目的。通过观察、比较、提出问题并解决问题来进行自主探索与合作交流,充分发挥学生主体参与作用、激发学生学习爱好,同时让学生获得成功体验。

六、教学过程的设计

为了全面、准确地引导学生探索发现分数的基本性质,实现教学目标,我努力抓住学生的思维生长点组织教学,设计了以下内容:

1.创设情境

片断一

师:我们班有男生多少人?女生呢?,你能说出我们班男生和女生的人数比吗?

生:男生和女生的人数比是:35:40。

师:你们认为这个比还可以……

生:化简单一点。

师:具体说说你的想法。

生:根据比的基本性质,把比的前项和后项同时除以5,得到7:8。

师:你怎么想到除以5的?

生:因为35和40的最大公约数是5。

师:说得很好!大家同意吗?

生:同意。

师:7:8,最简单了吗?

生1:是,因为7和8已经是互质数了。

生2:互质数就只有公约数1了,因此它是最简单的比了。

师:说得好!这里的7:8,前项和后项是互质数,你能给它取个名称吗?

生1:就叫最简单的比。

生2:我认为应该叫最简单的整数比更好。

师:为什么?

生:因为有时还可能出现小数或分数的比,也是很简单的。

师:你们大家都同意吗?那我们就把这样的比称为最简单的整数比。你能再说一个最简单的整数比吗?

生:2:3、1:2、8:9……

师:对于最简单的整数比,你们都理解了吗?

生:理解了。

师:说说你们的理解?

生1:首先前项和后项必须是互质数。

生2:那前项和后项就必须是整数。

生3:其实,它还是一个比。

师:同学们都说得很好,那12:18是最简单的整数比吗?

生:不是。

师:为什么?你是怎么想的?

生:12和18有公约数6。

师:那也就是说可以把这个比进行化简,把它化成最简单的整数比,对吗?你们想不想试一试。

…反思:以班中男女生人数为新知的切入点,通过师生互动、生生互动,理解最简整数比的含义,同时放手让学生利用新知去尝试解决把一个比化简,体现了在做中学的理念。

片断二

师:你能说说刚才的化简,用了什么知识?

生:根据比的基本性质,把比的前项和后项同时除以一个相同的数,就可以化简了。

师:要是给你一个分数或小数的比,你觉得还能再同时除以一个相同的数吗?

生:不能

师:为什么?

生:我觉得要将一个分数或小数比化简,必须同时乘一个相同的数,只有这样才能转化为整数比。

师:说得真好,还用上了转化。你们想不想试一试把一个分数比或小数比化简?谁来说一个分数比?

生::

师:再说一个小数比?

生::

师:那,咱们先来试一试。

……

反思:对于分数比和小数比的化简,确实有些难度,但由于学生已经初步有了化简比的方法,因此教师可以先让学生去试一试,这样学生的学习就会更主动。

片断三

师:谁先来说说你的想法。

小学数学说课稿5

各位评委,大家早上好!

今天我说课的课题是___________。首先,介绍下我对本节教材进行一些分析。

一、教材结构与内容简析

本节内容在全书及章节的地位:《____________》是初中数学新教材第___册(__)第___章第____节。在此之前,学生已学习了__________________,这为过渡到本节的学习起着铺垫作用。本节内容是____________________部分,因此,在_______________________________中,占据_______的地位。

数学思想方法分析:作为一名数学老师,不仅要传授给学生数学知识,更重要的是传授给学生数学思想、数学意识,因此本节课在教学中力图向学生:________________________________________________

二、教学目标

根据上述教材结构与内容分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

1、基础知识目标:

2、能力训练目标:

3、创新素质目标:

4、个性品质目标:

三、教学重点、难点、关键

本着课程标准,在吃透教材基础上,我确立了如下的教学重点、难点

重点:__________________________通过______________突出重点

难点:__________________________通过______________突破难点

关键:___________________________________________

下面,为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈:

四、教法

数学是一门培养人的思维,发展人的思维的重要学科,因此,在教学中,不仅要使学生“知其然”而且要使学生“知其所以然”,我们在以师生既为主体,又为客体的原则下,展现获取知识和方法的思维过程。基于本节课的特点:____________________,应着重采用_____________________的教学方法。即:_________________________________

五、学法

我们常说:“现代的文盲不是不识字的人,而是没有掌握学习方法的人”,因而在教学中要特别重视学法的 指导。

1、理论:

2、实践

3、能力:

最后我来具体谈一谈这一堂课的教学过程:

六、教学程序及设想

1、由___________________________________________引入:把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。

对于本题:

2、由实例得出本课新的知识点是:_________________________

3、讲解例题。

我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思 维能力。在题中:

4、能力训练。

课后练习______

使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、总结结论,强化认识。

知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。

重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一 反三的效果。

7、板书

8、布置作业。

针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“ 减负”的目的。

结束:说课是教师面对同行和其它听众口头讲述具体课题的教学设想及其根据的新的教学研究形式。以上,我仅从说教材,说学情,说教法,说学法,说教学程序上说明了“教什么"和“怎么教”,阐明了“为什么这样教”。说课对我来说仍是新事物,今后我也将进一步说好课,并希望各位专家领导对本堂说课提出宝贵意见。

一、说内容:

义务教育课程标准实验教科书(人教版)四年级下册第八单元《数学广角》第一课时。

二、说学习目标:

让学生经历将实际问题抽象出植树问题模型的过程,掌握种树棵数与间隔数之间的关系。

会应用植树问题的模型解决一些相关的实际问题,培养学生的应用意识和解决实际问题的能力。

3.感悟构建数学模型是解决实际问题的重要方法之一。

三、说学习重点:

让学生发现植树的棵数和间隔数之间的关系,并用发现的规律解决实际问题。

四、说学习方法:

创设情境,激发学生学习数学的兴趣,让学生感受到数学来源于生活,数学就在我们身边

五、学习过程:

一、初步感知间隔的含义

1导入:我们已经是四年级的学生了,做操,上体育课都少不了要排队,你会不会派队呢?

现在老师请三位同学到前面按照老师的要排队,谁愿意来?

出示要求:1面向老师排成一路纵队

2每两位同学之间相隔一米

告诉学生:第一个同学到最后一个同学的距离叫队伍的长,两个同学之间的距离叫间隔。

提问:这路纵队长几米?你是怎么知道的?如果我们把刚才的三位同学看成三棵树苗的话,那么三棵树苗之间有几个间隔?你能用线段图表示出来吗?师生共同总结得出结论:排队人数比间隔多一,间隔比人数少一

2过度语:其实,这样的数学问题,在我们的生活中,随处可见。

3再次感悟:让学生观察自己的左手,互相说说手指与间隔之间的关系。比如:5个手指之间有几个空格?也就是说,5个手指之间有几个间隔?4个间隔是在几个手指之间?

如果我们把五个手指当成五棵小树苗的话,五棵树苗之间应有几个间隔呢?四个间隔在几棵树苗之间呢?你能用一个图表示出来吗?

提问找生回答:如果画了8棵树,他们之间有几个间隔?9棵树之间有几个间隔?那你们再想象一下,如果从头到尾有10棵树,他们之间又会有几个间隔呢?那20棵树呢?

仔细观察,你发现植树棵树和间隔数之间有什么规律呢?(自己先想想,再把你的想法和同桌互相交流一下)。

4根据学生的反馈板书:两端要栽时,植树棵数-间隔数+1,间隔数=植树棵树-1。

小结:同学们不仅会观察,而且还能发现其中蕴含的规律,真不错,那就让我们一起进入今天的数学广角运用这些规律来解决生活中的实际问题吧!

二、新授

出示例题:同学们在全长100米的小路一边植树,每隔5米栽一棵(两端要栽),一共需要多少棵树苗?

指导学生读题:

1.从题目你们知道了什么?(说一说)

2.题目中每隔5米栽一棵是什么意思?

3.题目中有什么地方要提醒大家的吗?(两端要栽)

4.一共需要多少棵树苗?你能自己想办法找到问题答案吗?有困难的同学可以借助线段图画一画。

5.交流。

6.反馈。

(1)请你们两人把你们的方法写到黑板上展示给大家看看,好吗?

(2)学生分别说想法。

7.刚才我们要求路的两端都要栽时,得出植树棵数=间隔数+1,间隔数=植树棵树-1。知道了怎样求路的长度。如果知道了棵数与间隔数,你呢感求出路的长度吗?(培养学生的逆向思维)

如果两端都不栽的情况下,棵树与间隔数之间有什么关系呢?

我们还以这道题为例来研究一下:

(1)同学们在全长100米的小路一边植树,每隔5米栽一棵(两端不栽),一共需要多少棵树苗?

(2)分小组交流,也可以借助线段图分析

(3)反馈

(4)展示结果:两端不栽时,植树棵数=间隔数-1,间隔数=植树棵树+1

小结:生活中有许多问题都可以用方法解决,如锯木头,上楼梯,插彩旗,摆花等等

四、联系实际、拓展应用

1一根木头长10米,平均分成5段,每锯一段要8分钟,共要花多长时间?

2王村到李村一共有16根高压电线杆,相邻两根的距离平均是200米。王村到李村大约有多远?

3每隔6米种一棵树,共种了36棵,从第一棵到最后一棵有多远?

4从一层到三层共48个台级,如从一层到六层共多少个台级?

5公路一旁每隔50米有一根电线杆(包括两端)共10根,求路长?

六、总结:

通过这节课的学习,你们有什么收获?

今天我们学习的是与间隔有关的数学问题,在数学上我们统称为植树问题,(板书)植树问题不只在植树当中才有,植树只是其中的一个典型,像锯木头,上楼梯,插彩旗,摆花等现象中都含有植树问题。今天我们学习的植树问题仅仅是两端都栽时和两端都不栽时的情况。在以后的学习中,我们还会学到一端栽一端不栽和封闭图形的植树问题。

七、反思:

在这节课的教学中,我不但注重了学生动手操作能力的培养,同时也让学生感受到了数学来源于生活,也应用于生活的道理。比如:用排队人数与间隔数的关系抽象出植树问题中棵数与间隔之间的关系,既有趣味性又贴近学生的生活。

教材在编写时,都是给出路的长度,求间隔或棵数,但在练习时,很多题都是给出间隔和棵数,求路的长度。如:王村到李村一共有16根高压电线杆,相邻两根的距离平均是200米。

王村到李村大约有多远?练习题3从一层到三层共48个台级,如从一层到六层共多少个台级?由于学生初次接触植树问题,还不能融汇贯通,所以做起来有些难度。他们不明白从一楼到二楼算一层,很多学生认为楼梯的拐角处也该算一层,后来我在另一个班上课之前就先让学生分成小组,去观察,体验,感受,然后讨论,学生经历了这样一个认知过程,就不会出现前面的问题了。还有一道时钟的问题,五时时钟敲响5下,需要8秒,12时时敲响12下,需要几秒?要想做好这类题,就得让学生明白,需要的时间应该是第一次钟响与第二次钟响间隔的时间。避免上节课出现问题的同时我还针对上节课出现的问题对学生提出质疑,让生生互评或师生互评,重点表扬大部分学得好的同学使每一个学生获得参与的机会、培养学生探究精神体验成功的感觉,增强学生的自信心和荣誉感,使他们更加热爱数学。

20 2589463
");