相交线教案【汇集4篇】

网友 分享 时间:

【导言】此例“相交线教案【汇集4篇】”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

相交线教案【第一篇】

学习目标:

知识目标

了解两条直线互相垂直的概念;

2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线。

能力目标

培养提高学生观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。

德育目标

培养学生辩证唯物主义思想及不断发现,探索新知识的精神。

情感目标

通过创设情境,利用变式训练,多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的机会。

重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线

教具:多媒体、投影仪、自制的可旋转的两根木条等

互究策略:教学流程)

一、背景1.旗杆与旗台边缘线的垂直关系;红十字会标志;

2.两条直线相交,产生两对对顶角,且对顶角相等。

二、师生互究1.创设问题情境

师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?

师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……

师:让我们共同探索图甲这种特殊情况。

2.回顾再现:对顶角相等

两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC

1. 提高:教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。

师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2) 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?

生: ……(用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励)

2. 提升:两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。

师:ⅰ)如图(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O。“AB⊥CD”读作“AB垂直于CD”或“CD垂直于AB”。

ⅱ)两条直线AB⊥CD, 垂足为点O,则∠AOC=∠AOD=∠BOC=∠BOD=90°

5.再探究:师:请同学们举一些日常生活中互相垂直的直线的例子;生:……

师:请同学们用三角尺或量角器:

ⅰ)经过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的垂线有几条?

ⅱ)设这一点在直线AB上,重作上述过程。

:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

师:请同学们互相门交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义

师:

a)、靠已知直线——找待过定点——画已知直线的垂线(一靠、二过、三垂直)。

b)、有一条并且只有一条没有第二条。

师:如图(5)请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。

6.学生探索:如图(6)所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?

7.教师:只有线段AB最短,且当AB与DC垂直时,才最短。

提高为:线段AB的长度就是点A到直线DC的距离。

思考:点A到直线DC的距离与点A到点C的。距离有什么区别?

点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。

三、较量1.P170 1 、 2 、 3 2.应用:

⑴、某村庄在如图(7)所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。

⑵、教材P170 做一≮≯做⑶、体育课上怎样测量跳远成绩。

图(7)

脚印

脚印

四、分享:

a) 两条直线互相垂直的概念;

b) 如何过已知直线上或已知直线外的一点作唯一的垂线。

五、探索:① P174 1 、 2

③ 学校的位置如图(8)所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。

相交线教案【第二篇】

知识目标:

1.了解两条直线互相垂直的概念;

2.知道过一点有且仅有一条直线垂直于已知直线,会用三角尺或量角器过一点画一条直线的垂线,

数学教案-相交线。

能力目标

培养提高学生观察、理解能力,几何语言能力、画图能力,抽象思维能力。运用知识解决实际问题能力。

德育目标

培养学生辩证唯物主义思想及不断发现,探索新知识的精神。

情感目标

通过创设情境,利用变式训练,多种教学手段来激发学生学习兴趣,给学生创造成功的机会,使他们爱学、会学、学会,营造学生可持续发展的机会。

重点:两直线互相垂直的有关性质 难点:过直线上(外)一点作已知直线的垂线

教具:多媒体、投影仪、自制的可旋转的两根木条等

[学习目标是从基础知识教学、基本技能训练、数学能力培养和德育目标四个方面,依据《数学课程标准》关于“垂线”的具体教学要求和各种教学原则,以及本节的教材内容与学生的实际确定的。]

互究策略:(教学流程)

一、背景

1.[生活背景]旗杆与旗台边缘线的垂直关系;红十字会标志;

2.[知识背景]两条直线相交,产生两对对顶角,且对顶角相等。

二、师生互究

1.创设问题情境

师:这是两幅草坪的图案。在绿色的草坪上,画着两条交叉的道路。你觉得甲图、乙图那幅更漂亮、更匀称。这是什么原因?[教师用多媒体或投影仪展示]

[学生众说纷纭,教师应给予充分的肯定]

师:图甲是两条直线相交的一种特殊情况,它在生活、生产实际中应用比较广。请你再举一些类似的例子。生:……

师:让我们共同探索图甲这种特殊情况。

[借助于教具,模型,实物,图形及幻灯等教学手段,使学生先得到直观的感性认识,培养学生从感性到理性的认识方式]

2.回顾再现:对顶角相等

两条直线相交只有一个交点。如图(1),直线AB和CD相交,交点为点O,有四个小于平角的角,且∠AOC=∠BOD,∠AOD=∠BOC

1. 提高:教师演示自制教具,要求学生观察当一根木条绕着另一根木条旋转是的变化情况,并用数学语言进行描述。

[教师应鼓励学生大胆描述自己的观察结果,并及时予以肯定。]

师:两直线相交,有两组分别相等的角,当一个角等于90°时,其它三个角有什么变化?可能产生四个相等的角吗?如图(2)[同时演示教具] 将直线CD绕着点O旋转,当∠BOD=90°时,∠AOC、∠AOD、∠BOC是多少度?生:……师:你们的依据是什么?

生: ……(用度量的方法;利用对顶角相等;互补的概念……学生回答过程中,只要有道理就应予以鼓励)[这里希望在感性认识的基础上进行抽象概念的教学,培养学生的抽象思维能力。]

3. 提升:[教师引导学生归纳]两条直线互相垂直:两条直线相交所构成的四个角中有一个角是直角时,称这两条直线互相垂直。

师:ⅰ)如图(2),直线AB和CD相交,交点为O,∠BOC=90°,记为AB⊥CD,垂足为点O,“AB⊥CD”读作“AB垂直于CD”或“CD垂直于AB”。

ⅱ)两条直线AB⊥CD, 垂足为点O,则∠AOC=∠AOD=∠BOC=∠BOD=90°

[实现数学的三大语言:文字语言,符号语言,几何语言之间的切换,并板书以突出其重要性]

4.再探究:师:请同学们举一些日常生活中互相垂直的直线的例子;生:……

[希望实现将数学知识在实际生活中的运用,并为后继数学知识增加感性认知]

师:请同学们用三角尺或量角器:

ⅰ)经过直线AB外一点P,画直线与已知直线AB垂直,且讨论这样的垂线有几条?

ⅱ)设这一点在直线AB上,重作上述过程。

[学生分组或独立探索,教师巡视指导]

[教师引导学生归纳结论]:在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直。

[通过学生动手操作画图,教师在巡视中及时指出、纠正学生发生的错误,训练学生以严谨的科学态度研究问题、解决问题。

师:请同学们互相门交流且简单描述一下,上述结论用三角尺的作法过程和“有且只有”的含义

[学生讨论交流,教师巡视] 师:[引导归纳]

a)、靠已知直线——找待过定点——画已知直线的垂线(一靠、二过、三垂直)。

b)、有一条并且只有一条没有第二条。

师:请同学们相互比试,谁能更快地过直线CD上一点P作直线AB的垂线。并在小组间进行交流。

[探究性活动是《数学课程标准》的一个重要举措,并为培养学生的创新意识提供了一些机会。“做一做”进行小组交流,一方面是为了加强对学生动手操作能力的'培养,同时也培养了学生的合作意识和竞争意识,使学生更深入理解垂直、垂线的概念。]

5.学生探索:[学生分小组测量,讨论,归纳]如图(6)所示,点A与直线DC上各点的距离长短一样吗?谁最短?它具备什么条件?[抽小组代表发言]

6.教师:[总结归纳]只有线段AB最短,且当AB与DC垂直时,才最短。

[教师引导学生得出线段AB特征:A为直线外一点,B为过A向直线DC所引的垂线的垂足,]

提高为:线段AB的长度就是点A到直线DC的距离。

思考:点A到直线DC的距离与点A到点C的距离有什么区别?

点A到直线DC的距离:线段AB的长度,A为直线外一点,B为过A向直线DC所引的垂线的垂足;点A到点C的距离:两点之间线段的长度。

[从生活实际,从学生感兴趣,熟悉的问题引导学生发现垂线的第二个性质,提高学生学数学的兴趣,并适当体现学数学——用数学——发现数学的思想。]

三、较量应用:[使学生在相互竞争中,实践应用本节课的知识,分享获取成功的喜悦,并促进学生积极向上的心理品质]

⑴、某村庄在如图(7)所示的小河边,为解决村庄供水问题,需把河中的水引到村庄A处,在河岸CD的什么地方开沟,才能使沟最短?画出图来,并说明道理。

⑵、教材P170 做一做⑶、体育课上怎样测量跳远成绩。

[学以致用,学生做个小小设计师,兴趣盎然,把这节课引入高潮。]

四、分享:

a) 两条直线互相垂直的概念;

b) 如何过已知直线上或已知直线外的一点作唯一的垂线。

五、探索:① P174 1 、 2

③ 学校的位置如图(8)所示,请设计出学校到两条公路的最短距离的方案,并在图上标出来,并说明理由。

相交线教案【第三篇】

课型:新授课

备课人:

审核人:

学习目标

1.通过动手观察、操作、推断、交流等数学活动,进一步发展空间观念毛

2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角

重点、难点

重点:邻补角、对顶角的概念,对顶角性质与应用。

难点:理解对顶角相等的性质的探索。

教学过程

一、复习导入

教师在轻松欢快的音乐中演示第五章章首图片为主体的课件。

学生欣赏图片,阅读其中的文字。

师生共同总结:我们生活的世界中,蕴涵着大量的相交线和平行线。本章要研究相交线所成的'角和它的特征,相交线的一种特殊形式即垂直,垂线的性质,研究平行线的性质和平行的判定以及图形的平移问题。

二、自学指导

观察剪刀剪布的过程,引入两条相交直线所成的角

握紧把手时,随着两个把手之间的角逐渐变小,剪刀刃之间的角边相应变小。如果改变用力方向,随着两个把手之间的角逐渐变大,剪刀刃之间的角也相应变大。

三、问题导学

认识邻补角和对顶角,探索对顶角性质

(1)学生画直线AB、CD相交于点O,并说出图中4个角,两两相配共能组成几对角?各对角的位置关系如何?根据不同的位置怎么将它们分类?

学生思考并在小组内交流,全班交流。

∠AOC和∠BOC有一条公共边OC,它们的另一边互为反向延长线。

∠AOC和∠BOD有公共的顶点O,而是∠AOC的两边分别是∠BOD两边的反向延长线。

(2)学生用量角器分别量一量各个角的度数,以发现各类角的度数有什么关系,学生得出有"相邻"关系的两角互补,"对顶"关系的两角相等。

(3)概括形成邻补角、对顶角概念。

有一条公共边,而且另一边互为反向延长线的两个角叫做邻补角。

如果两个角有一个公共顶点,而且一个角的两边分别是另一角两边的反向延长线,那么这两个角叫对顶角。

四、典题训练

1.例:如图,直线a,b相交,∠1=40°,求∠2,∠3,∠4的度数。

2.判断下列图中是否存在对顶角。

小结

相交线教案【第四篇】

教学目标:1.理解对顶角和邻补角的概念,能在图形中辨认.

2.掌握对顶角相等的性质和它的推证过程.

3。通过在图形中辨认对顶角和邻补角,培养学生的识图能力.重点:在较复杂的图形中准确辨认对顶角和邻补角.难点:在较复杂的图形中准确辨认对顶角和邻补角.

教学反思

教学过程

一、创设情境,引入课题

先请同学观察本章的章前图,然后引导学生观察,并回答问题.学生活动:口答哪些道路是交错的,哪些道路是平行的.

教师导入:图中的道路是有宽度的,是有限长的。,而且也不是完全直的,当我们把它们看成直线时,这些直线有些是相交线,有些是平行线.相交线、平行线都有许多重要性质,并且在生产和生活中有广泛应用.所以研究这些问题对今后的工作和学习都是有用的,也将为后面的学习做些准备.我们先研究直线相交的问题,引入本节课题.

二、探究新知,讲授新课

1.对顶角和邻补角的概念

学生活动:观察上图,同桌讨论,教师统一学生观点并板书.

板书∠1与∠3是直线AB、CD相交得到的,它们有一个公共顶点O,没有公共边,像这样的两个角叫做对顶角.

学生活动:让学生找一找上图中还有没有对顶角,如果有,是哪两个角?学生口答:∠2和∠4再也是对顶角.紧扣对顶角定义强调以下两点:

(1)辨认对顶角的要领:一看是不是两条直线相交所成的角,对顶角与相交线是唇齿相依,哪里有相交直线,哪里就有对顶角,反过来,哪里有对顶角,哪里就有相交线;二看是不是有公共顶点;三看是不是没有公共边.符合这三个条件时,才能确定这两个角是对顶角,只具备一个或两个条件都不行.

(2)对顶角是成对存在的,它们互为对顶角,如∠1是∠3的对顶角,同时,∠3是∠1的对顶角,也常说∠1和∠3是对顶角.2.对顶角的性质

提出问题:我们在图形中能准确地辨认对顶角,那么对顶角有什么性质呢?学生活动:学生以小组为单位展开讨论,选代表发言,井口答为什么.板书∵∠1与∠2互补,∠3与∠2互补(邻补角定义),

∴∠l=∠3(同角的补角相等).

注意:∠l与∠2互补不是给出的已知条件,而是分析图形得到的;所以括号内不填已知,而填邻补角定义.

或写成:∵∠1=180°-∠2,∠3=180°-∠2(邻补角定义),∴∠1=∠3(等量代换).

学生活动:例题比较简单,教师不做任何提示,让学生在练习本上独立完成解题过程,请一个学生板演。

解:∠3=∠1=40°(对顶角相等).∠2=180°-40°=140°(邻补角定义).∠4=∠2=140°(对顶角相等).三、范例学习

学生活动:让学生把例题中∠1=40°这个条件换成其他条件,而结论不变,自编几道题.

变式1:把∠l=40°变为∠2-∠1=40°变式2:把∠1=40°变为∠2是∠l的3倍变式3:把∠1=40°变为∠1:∠2=2:9四、课堂小结

学生活动:表格中的结论均由学生自己口答填出.

五、布置作业:课本P3练习

20 1212056
");