2024年六年级数学教案课件例文专业【通用8篇】
【请您参阅】下面供您参考的“2024年六年级数学教案课件例文专业【通用8篇】”是由阿拉网友精心整理分享的,供您阅读参考之用,希望此例范文对您有所帮助,喜欢就复制下载支持一下小编了!
六年级数学教案课件例文【第一篇】
教学目标:
1.使学生结合解决实际问题的过程,理解并掌握分数四则混合运算的运算顺序,并能按运算顺序正确进行计算,主动体会整数运算律在分数运算中同样适用,并能根据运算律和运算性质进行一些分数的简便计算。
2.使学生在理解分数四则混合运算的运算顺序以及应用运算律进行分数简便计算的过程中,进一步培养观察、比较、分析和抽象概括的能力。
3.使学生在学习分数四则混合运算的过程中,进一步积累数学学习的经验,体会数学学习的严谨性和数学结论的确定性。
教学重点:
分数四则混合运算的运算顺序。
教学难点:
运用运算律和运算性质进行简便计算。
教学准备:
多媒体课件。
教学过程:
一、复习引入。
做练习十二第1题,直接写出得数。
集体交流,选择几题让学生说说算法。
二、创设情境,探究新知。
要求学生自主列出综合算式,并尽可能列出不同的综合算式。
2.集体交流。教师根据学生的回答板书算式。
2/5×18+3/5×18(2/5+3/5)×18。
追问:列式时你是怎么想的?
3.指出:在一道有关分数的算式中,含有两种或两种以上是运算,统称为分数四则混合运算。这两道算式都属于分数四则混合运算。(板书课题)。
三、教学分数四则混合运算的运算顺序。
你会计算上面这两道式题吗?
4.做“练一练”第1题。
提问:这两题的运算顺序是怎样的?同桌相互说一说。
学生独立计算,指名板演。
集体校对,共同评议。
提问:在进行分数四则混合运算时,你认为要注决些什么?
指出:计算分数四则混合运算,要先弄清楚先算什么,再算什么;例如第一小题,分数乘除法连在一起,可以把除法转化为乘法,一次约分,同时计算;再如第二小题,分数连加时可以同时通分。
四、教学把整数的运算律推广到分数。
通过交流明确:整数的运算律在分数运算中同样适用。我们在进行分数四则混合运算时,要恰当地应用运算律使计算简便。
2.做“练一练”第2题。
先让学生独立计算,指名板演。
集体交流,说说哪里用了简便算法,分别是怎样想的。
小结:简便运算主要应观察算式的特点,看能不能运用运算律运算性质使计算简便,有些题目不能直接进行简便计算,要先算一步或几步才能应用运算律或运算性质简便计算,因此在计算过程中要随时注意观察算式的特点,思考能不能用简便计算。
五、巩固练习。
做练习十二第3题。
让学生独立练习,指名四人板演。
交流:每道题是哪里用了简便计算,依据是什么?
六、全课小结。
这节课你学会了什么?你有什么收获和体会?进行分数四则混合运算时应该注意什么?
七、作业布置。
补充习题相对应页。
学生分别计算,并指名板演。
3.小结:分数四则混合运算的运算顺序与整数四则混合运算的运算顺序相同,也是先算乘除,后算加减,有括号的要先算括号里面的。
六年级数学教案课件例文【第二篇】
使学生知道对于同样的数据可以有多种分析的方法,能根据需要选择合适的统计图,直观、有效地描述数据,进一步发展数据分析观念。
教学重点了解不同统计图的特点,合理选择用不同统计图来未表述。
教学难点熟练掌握不同统计图的特点。
我们已经学过哪些统计图,它们各有什么特点?
名称优点
条形统计图能清楚地看出数量的多少
折线统计图不仅可以反映数量的多少,还能看出数量增减变化趋势
扇形统计图能清楚地反映出各部分与整体的关系
下面几组数据分别选用哪种统计图表示更合适?
(1)绿荫小学xxxx-xxxx年校园内树木总量变化情况统计表。
(2)xxxx年绿荫小学校园内各种树木所占百分比情况统计表。
(3)xxxx年绿荫小学校园内各种树木数量统计表。
第(1)小题
(1)绿荫小学xxxx-xxxx年校园内树木总量变化情况统计表。
绿荫小学xxxx-xxxx年校园内
树木总量变化情况统计图
第(2)小题
(2)xxxx年绿荫小学校园内各种树木所占百分比情况统计表。
这题给出了各种树木占树木总量的百分比,用条形统计图和扇形统计图都可以表示出这些信息。但用扇形统计图更能直观地看出部分与整体之间的关系。
第(3)小题
(3)xxxx年绿荫小学校园内各种树木数量统计表。
这题给出了各种树木的数量,只能用条形统计图来表示。为什么不能用其他的统计图?
1、在林业科学里,通常根据乔木生长期的长短将乔木分成不同的类型。
下面是我国乔木林各龄组的面积构成情况。
以上信息可以用什么统计图描述?哪种更直观些?
2、完成教科书第99页“做一做”
3、完成练习二十一第5、6、7、8题
这节课学习了什么内容?应该注意些什么?
六年级数学教案课件例文【第三篇】
统计天地。
教学目标:
1、使学生进一步掌握用分数(或百分数)表示简单事件发生的可能性的方法。
2、使学生会根据事件发生可能性的大小要求设计相应的活动方案。
教学过程:
一、提问:
问:我们在学习可能性的知识时,怎样用分数来表示可能性的大小呢?你们能举例说说吗?
我们还会根据事件发生可能性大小的要求设计活动方案,对此,你有什么体会?
二、完成第25题。
读题,理解题意。
可演示主持人两次抽奖的过程,使学生明白:
第(1)题用4种不同颜色的彩纸表示4种不同颜色的座位票,演示从中抽出一种颜色的座位票,启发学生思考每个同学获得开心奖的可能性。
第(2)题用10张红色彩纸表示10张红色座位票,按1~10编号后,演示从中抽出一个编号的'座位票,启发学生思考拿红色票的同学获得幸运奖的可能性。
三、完成第26题。
出示题目,读题。
问:要使落下后红色面朝上的可能性是1/3,必须有几个面涂上红色?有几种涂的方法?
要使落下后数字2朝上的可能性是5/6,必须有几个面写上2字?有几种写法?
在交流中使学生认识到:
符合要求的涂色或写数方法不是唯一的,但第(1)题必须有2个面涂成红色,第(2)题必须有5个面写2。
六年级数学教案课件例文【第四篇】
教学内容:教材第68页例2,练习十一第2题。
教学目标。
1.综合运用统计知识学会从折线统计图中准确提取统计信息,并作出正确的判断和简单的预测。
3.理解折线统计图中各个数据的具体含义,培养学生仔细观察的习惯。
教学重点、难点:从折线统计图中获信息,并能作出决策。
教学过程。
一、引入:
回忆折线统计图的特点。
二、探究交流、总结规律。
1.小组探讨、交流。
出示教科书第68页两幅折线统计图,
提问:根据这两幅统计图,你们了解到哪些信息?
根据提出的问题,让学生在小组内交流、讨论,谈感受。
学生可能会谈到:
a和b两人绘制的是同一个公司员工的月薪统计图,为什么看起来不一样呢?第一幅图看起来工资增长很快,第二幅图看起来工资增长较慢。
2.引导释疑。
在学生讨论交流的基础上,教师提问:
请大家仔细观察,两幅图看起来虽然不同,但它们所描述的统计数据却是完全一致的,之所以两图不同,原因在于绘图时采用的单位不同:左图1格代表50元,右图2代表100元。
3.小结。
引导学生认识到:
在利用统计图进行比较和判断时,一定要注意统一标准,才不致发生误会。
三、巩固练习。
1.完成教科书第69页练习十一2.
2.补充练习。
四、总结概括。
1.学习了这节课,你知道在利用统计图作分析判断时应注意哪些问题吗?
2.谈你的收获。
(本课注意事项:从折线统计图中准确提取统计信息时,特别要注意标准是否统一,以免影响到正确的判断和预测。)。
六年级数学教案课件例文【第五篇】
一、教学内容:
1、根据方向和距离两个条件确定物体的位置。
2、根据方向和距离,在图上绘出物体的距离。
3、体会位置关系的相对性。
4、描述并绘制简单的路线图。
二、教学目标:
1.通过解决实际问题,使学生体会确定位置在生活中的应用,了解确定位置的方法。
2.使学生能根据方向和距离确定物体的位置,并能描述、绘制简单的路线图。
三、教学重点:
1、体会位置关系的相对性。
2、根据方向和距离确定物体的位置并在图上绘出物体的距离。
四、课时安排:
1、根据方向和距离两个条件确定物体的位置。1课时。
2、根据方向和距离,在图上绘出物体的距离。1课时。
位置与方向(一)。
教学内容:根据任意方向和距离确定物体的位置。
教学目标:
1、通过具体的活动,认识方向与距离对确定位置的作用。
2、能根据任意方向和距离确定物体的位置。
3、发展学生的空间观念。
教学重、难点:
1、能根据任意方向和距离确定物体的位置。
2、对任意角度具体方向的准确描述。
教学过程:
一、设置情景:
如果你是赛手,你将从大本营向什么方向行进?你是怎样确定方向的?
小组讨论:运用以前学过的知识得到大致方向。
1、训练加方向标的意识:加个方向标有什么好处?
2、突出以大本营为观测点:为什么把方向标画在大本营?
探究任意方向和距离确定物体的位置。
质疑:
1、知道吐鲁番在大本营的东北方向就可以出发了吗?
2、如果这时就出发可能会发生什么情况?
小组讨论:
沿什么方向走就能保证赛手更准确、更快的找到目的地。
研究时,可以用上你手头的工具。
吐鲁番在大本营东偏北30度。
练一练:你说我摆,为小动物安家。
(课前剪好小图片,课上动手操作。)。
例:我把熊猫的家安在偏,的方向上。
解决问题,寻找得出距离的方法。
如果你的赛车每小时行进200千米,你要走几小时能到达考察地?
图上没有直接标距离,你有什么办法解决它呢?
仔细观察地图,你发现了什么?小组试一试解决。
二、练习:
1、以雷达站为观测点,填一填。
护卫舰的位置是偏度,距离雷达站千米。巡洋舰的位置是偏度,距离雷达站千米。鱼雷艇的位置是偏度,距离雷达站千米。
2、以电视塔为观测点,按要求填空。
文化广场在电视塔西偏南45度的方向;体育场在电视塔东偏南30度的方向;博物馆在电视塔东偏南60度的方向;动物园在电视塔北偏西40度的方向。
三、课后延伸:
游乐场要新建两个游乐项目:一个在观览车西偏北40o方向。
上,约200米处新添一个“登月舱”,另一个“天外来客”在观览车南偏东20o方向上,约150米处。请你在平面图上标出这个新项目的位置。
位置与方向(二)。
教学内容:根据方向和距离,在图上绘出物体的距离。
教学目标:
1、能绘制平面示意图,通过制作平面图的过程,使学生知道如何根据方向和距离,在图上标出物体的位置。
2、通过绘制平面图,培养学生的动手操作能力。在活动中,培养学生合作探究的意识和能力。
3、通过解决问题,使学生体会所学知识在生活中的应用,增强学生学好数学的兴趣和意识。
教学重、难点:根据方向和距离,绘制平面示意图。
教学过程:
一、复习引入。
合作绘图、练习巩固。
目的是通过看图回答问题,复习、巩固有关图上方向、角度、距离等知识,为下面自己绘制平面图作准备。
(1)停车场在广场的方向,距离大约是米。小红家在广场的偏方向,距离大约是米。
(2)地铁站在广场东偏南45度方向,距离广场100米。你能在图上标出地铁站的位置吗?并说一说是怎么想的。
1、出示学校的录相或图片。
出示数据:教学楼在校门的正北方向150米处。图书馆在校门的北偏东35度方向150米处。体育馆在校门的西偏北40度方向200米处。活动角在校门的东偏北15度方向50米处。
2、小组讨论:你们打算怎么完成任务?有什么问题要解决吗?
3、小组汇报完成平面图绘制的计划,教师进行梳理:
(1)绘制平面图的方法:
先确定平面图上的方向,再确定各建筑物的距离。如果学生没有说道,老师可以进行引导:你们打算怎样在图上表示出150米,200米和50米?从而帮助学生确定比例尺,和图上距离。
(2)小组合作完成,可以怎样分工,能在有限的时间内又好又快地完成任务。
4、小组活动,绘制平面图。
5、展示各组绘制的平面图,集体进行评议。
(1)评价绘制的正确性,如果平面图有问题,说一说问题是什么,应该怎样确定位置。
订正后交流:你们组认为在确定这点在图上的位置时,应注意什么?怎样确定?
教师小结:绘制平面图时,一般先确定角度,再确定图上的距离。
(2)比较各个平面图,为什么有的图大,有的图小?
小结:1厘米表示的大小不同,图的大小也不同。
二、练习:
1、完成书上习题21页3、4题并订正。
2、在纸上设计小区,并说明各个建建筑的位置。
老师提供给学生一些建筑物的图片:如医院、学校、商店、银行、邮局、药店等。
教后记:
“位置”的教学内容是第一学段相应教学内容的扩展和提高。学生在低年段已经学习了如何根据行、列确定物体的位置,并通过中年级“位置与方向”的学习,知道了在平面内可以根据两个条件确定物体的位置。本课在此基础上,让学生学习用数对表示具体情境中物体的位置,进一步提升学生的已有经验,培养学生的空间观念。
单元小结。
通过学习,大部分学生基本能够正确判断物体的方向和距离,能够在方位图上按照有关要求正确画出物体的位置并正确绘制方位图,判断比较准确,绘图规范,但是个别学生总是找不准方向,因而不能判断方向,也不能够正确绘制方位图。
六年级数学教案课件例文【第六篇】
比例的意义。
教学目标:
使学生理解比例的意义,能应用比例的意判断两个比能否成比例。
教学重点:
比例的意义。
教学难点:
找出相等的比组成比例。
教具准备:
多媒体课件。
教学过程:
一、比例的意义。
1.请同学们回忆一下上学期我们学过的比的知识,谁能说说什么叫做比?并举例说明什么是比的前项、后项和比值。
教师把学生举的例子板书出来,并注明比的各部分的名称。
2.出示情境图,(课件演示)。
(1)说一说各幅图的情景。
(2)图中有什么相同之处?
(3)“你们知道下面这些国旗的长和宽是多少吗?”
(4)写出它们的长和宽的比,求出比的比值,你有什么发现?
出示教室里的国旗:(提问通过刚才的计算,你有什么发现?组织学生讨论。学生各抒己见)教师说明:我们看到这两个的`长宽比的比值相等,所以这两个比也是相等的,我们把它们用等号连起来。
也可以这样表示:出示比例的分数写法。
像这样表示两个比相等的式子叫做比例。
在上面图中的四面国旗的尺寸中,你还能找出哪些比可以组成比例?学生说出能够组成的比例。
3.在此基础上让学生总结归纳发现的规律。
我们知道了比例是由两个相等的比组成的。在判断两个比能不能组成比例时,关键是看这两个比是不是相等。如果不能一眼看出两个比是不是相等,可以先分别把两个比化简以后再看。
4.比较“比”和“比例”两个概念。(出示表格来比较。)比是两个数相除的式子;而比例是两个比相等的式子,是四个数。
教师。
引导学生从意义上、项数上进行对比,最后教师归纳。
比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项。
5.做一做。
完成课文“做一做”。
第1题。
(1)什么样的比可以组成比例?
(2)把组成的比例写出来。
(3)说一说你是怎么找的。说一说。
(4)同学之间互相交流,检验各自所写的比例。
(强调:本课主要利用求比值的方法判断两个比能否组成比例。)。
第2题。
(5)学生独立写比例,看谁写得多。
(6)同学之间互相交流,说一说你是怎么写的,一共可以写多少个不同的比例。
6.课堂小结。
(1)什么叫做比例?
(2)一个比例式可以改写成几个不同的比例式?
(用1、2、5、10四个数写出所有的比例式。8个,并且找出写的规律。)。
二、巩固练习。
完成课文练习六第1~3题。
三、作业。
教学反思:
在教学中,我遵循由易到难,步步深化的教学规律,按照复习旧知--创设情境--学生思考--学生计算--教师总结--学生自主探究(反馈)的模式进行教学。重视学生的主体地位,通过学生的自主探究,调动学生学习的积极性和主动性。
六年级数学教案课件例文【第七篇】
1.会综合应用学过的统计知识,能从统计图中准确统计信息,能够解释统计结果。
2.能根据统计图提供的信息,作出正确的判断或简单预测。
学情分析。
学生已学过一些统计知识,教师可以组织学生选择一个全班感兴趣的问题展开讨论,让学生收集数据,用统计图表展示数据,并作出决策。
重点、难点:培养学生的统计意识;从统计图中获信息,并能作出决策。
课时安排:2课时。
第一课时统计(1)。
教学内容:教材第68页例1,练习十一第一题。
教学目标:
1.体会数据在现实生活中的作用。
2.理解扇形统计图的特点,能从扇形统计图中获取有用的信息,并作出相关决策。
3.理解统计图中各个数据的具体含义,培养学生仔细观察的习惯。
教学重点、难点:从扇形统计图中获信息,并能正确决策和简单的预测。
教学媒体:
教师可以再准备课本以外的扇形统计图。
教学过程。
1.情境导入。
同学们,你们喜欢看电视吗?你们知道家里的电视是什么品牌的吗?
今天我们就去彩电市场看看各种彩电的市场占有率吧!
(出示教科书第68页例1的扇形统计图)。
二、探究交流、总结规律。
1.小组探讨、交流。
根据这幅统计图,你们了解到哪些信息?a牌彩电是市场上最畅销的彩电吗?
根据提出的问题,让学生在小组内交流、讨论。学生可能会产生两种不同的看法:一部分会认为a品牌最畅销,而另一部分则认为a品牌不是最畅销的。
(学生谈出个人观点后,会出现一些争论,让学生在争论中做出判断.)。
2.引导释疑。
在学生讨论交流的基础上,教师提问:请大家仔细观察,说说。
统计图里“其它”部分可能包含了哪些信息呢?
可让学生分别说说"其它"的具体含义,从而明确。
“其它”里面可能含有比a牌更畅销的彩电产品。
3.小结。
这幅统计图提供的数据比较模糊,不够完整,我们无法得到有关彩电市场占有率的完整信息,所以从本统计图中不能得出a牌彩电最畅销的结论。
引导学生认识到:
在利用统计图作判断和决策时,一定要仔细观察,注意从统计图提供的数据信息出发,不要单凭直观感受轻易下结论。
三、巩固练习。
1.完成教科书第69页练习十一1.
2.补充习题。
四、总结概括。
1.学习了这节课,你知道在利用统计图作分析判断时应注意哪些问题吗?
2.谈你的收获。
(本课注意事项:1.根据统计图提供的信息做出正确的判断和决策;2.不要单凭直观感受轻易下结论。)。
六年级数学教案课件例文【第八篇】
1.理解圆柱表面积的意义,掌握圆柱表面积的计算方法。
2.能正确地计算圆柱的表面积。
3会解决简单的实际问题。
4.初步培养学生抽象的逻辑思维能力。
教学重点。
理解并掌握圆柱表面积的计算方法,并能正确进行圆柱表面积的计算。
教学难点。
能充分运用圆柱表面积的相关知识灵活的解决实际问题。
教学过程。
一复习旧知。
1计算下面圆柱的侧面积。
(1)底面周长米,高米。
(2)底面直径4厘米,高10厘米。
(3)底面半径分米,高8分米。
2求出下面长方体、正方体的表面积。
(1)长方体的长为4厘米,宽为7厘米,高为9厘米。
(2)正方体的棱长为6分米。
3讨论说说长方体、正方体的表面积的意义及其表面积的计算方法。
学生甲:长方体、正方体的表面积指的是长方体、正方体的六个面的面积的总和。
学生乙:计算长方体的表面积时只要计算长方体相互对立的3个面的面积,3个面的面积相加再乘以2就是长方体的表面积。正方体的表面积是棱长乘以棱长再乘以6。
二新课导入。
1教师:以前我们学习了长方体、正方体的表面积的意义及其表面积的求法,那么圆柱体的表面积的计算和长方体、正方体的表面积的计算有什么区别和联系呢?圆柱的表面积又是如何计算的呢?接下来我们一起来讨论和探索这个问题。(板书:圆柱的表面积)。
2学生讨论:你认为圆柱的表面积是指哪一部分?它由几个面组成?
(1)学生分组讨论。
(2)学生汇报讨论结果。
3反馈小节:圆柱的表面积指的是圆柱的侧面积和两个底面积的总和,圆柱的表面积由一个侧面机和两个底面组成。(板书:圆柱的侧面积+圆柱的两个底面积=圆柱的表面积)。
4教师进行圆柱模型表面展开演示。
(1)学生说说展开的侧面是什么图形。
学生:圆柱展开的侧面是一个长方形。
(2)学生说说长方形的长和宽与圆柱的底面周长和高有什么关系?
学生:长方体的长(或宽)等于圆柱的底面积,长方体的宽(或长)等于圆柱的高。
(3)圆柱的侧面积是怎样计算的?抽生回答进行复习整理。(板书:圆柱的侧面积=圆柱的底面周长×圆柱的高)。
(3)圆柱的底面积怎么计算?(复习底面积的计算方法)。
5说说实际生活中有哪些圆柱体?哪些表面是完整的,哪些表面是不完整的?
学生举例:完整的圆柱有两个底面,不完整的圆柱只有一个底面(如水桶)或者根本就没有底面(如烟囱)。
教师:所以我们每个同学在计算圆柱的表面积时要特别认真,要特别注意这个圆柱到底有几个底面。
三新课教学。
1例2一个圆柱的高是分米,底面半径2分米,它的表面积是多少?(课件演示)。
2学生尝试练习,教师巡回检查、指导。
3反馈评价:
(1)侧面积:2×2×=(平方分米)。
(2)底面积:×2×2=(平方分米)。
(3)表面积:+=(平方分米)。
答:它的表面积是平方分米。
4学生质疑。
5教师强调答题过程的清楚完整和计算的正确。
6教学小节:在计算过程中你发现了什么?计算圆柱的表面积一般要分成几步来计算呀?
四反馈练习:试一试。
1学生尝试练习:要做一个没有盖的圆柱形铁皮水桶,高50厘米,底面直径为30厘米,至少需要多少铁皮?(得数保留整数)。
2学生交流练习结果(注意计算结果的要求)。
3教师评议。
教师:在实际运用中四舍五入法和进一法有什么不同?
学生;计算使用材料的用量时为确保使用材料的充足通常都使用进一法,计算结果如果使用四舍五入法也许会出现使用材料不足的现象。
五拓展练习。
1教师发给学生教具,学生分组进行数据测量。
2学生自行计算所需的材料。
3计算结果汇报。
教师:同学们的答案为什么会有不同?哪里出现偏差了?
学生甲:可能是数据的测量不准确。
学生乙:可能是计算出现错误。
教师:在实际运用中如果数据测量不准确或者计算出现错误,或许就会造成很大的经济损失,这种损失也许是不可估量的,但事实上它又是很容易避免的。所以我们每个同学都要养成认真、仔细的好习惯。
六巩固练习。
1计算下面图形的表面积(单位:厘米)(略)。
2计算下面各圆柱的表面积。
(1)底面周长是厘米,高分米。
(2)底面半径米,高2米。
(3)底面直径10分米,高80厘米。
3一个圆柱形的罐头盒,底面直径是16厘米,高是10厘米,它的表面积是多少厘米?
4一个圆柱铁桶(没盖),高是5分米,底面半径是2分米,做一个这样的铁桶,至少需要多少铁皮?(得数保留一位小数)。