《余弦定理》说课稿精编3篇

网友 分享 时间:

【导言】此例“《余弦定理》说课稿精编3篇”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

余弦定理说课稿1

一、教材分析:(说教材)

《余弦定理》是全日制中等教育国家规划教材(人教版)数学第一册中第六章平面向量第六部分。余弦定理是欧氏空间度量几何的最重要定理,是解斜三角形的重要定理,是整个测量学的基础。余弦定理是勾股定理的推广,可用解析法、向量法等方法证明。余弦定理主要能解决有关三角形的三类问题:1)、已知两边及其夹角,求第三边和其他两个角。2)、已知三边求三个内角;3)、判断三角形的形状。以及相关的证明题。

二、说教学思路

本着数学与专业有机结合的指导思想,让数学服务于专业的需要。以及最大限度的提高学生的学习兴趣,在本节课,我不是将余弦定理简单呈现给学生,而是创造设情境,设计了与机械相关联并具有爱国主题的二个任务,通过任务驱动法教学,极大提高了学生的学习兴趣,激发学生探索新知识的强烈求知欲望,在完成数学教学任务的同时,强化了数学与专业的有机结合,培养了学生将数学知识运用于自身专业中的能力。同时通过任务驱动,培养了学生自主探究式学习的能力;提升解决实际实际问题的能力。因为所设计的两个任务具有爱国**题材,学生在完成知识学习的同时,也极大的激发了爱国**精神。

三、说教法

在确定教学方法前,首先要求教师吃透教材,选择恰当的教学方法和教学**把知识传授给学生。本节课主要采用任务驱动法、引导发现法、观察法、归纳总结法、讲练结合法。并采用电教**使用多**辅助教学。 1. 任务驱动法

教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,提高学生学习的兴趣,激发求知欲,启发学生对问题进行思考。在研究过程中,激发学生探索新知识的强烈欲望。提升解决实际总是的能力,并极大的激发了爱国**精神。

2. 引导发现法、观察法

通过对勾股定理的观察和三角形直角的相关变形,学生从中受启发,发现余弦定理,并证明它。

3. 归纳总结法

学生通过前期的探索研究,自主归纳总结出余弦定理及其推论及判断三角形形状的相关规律。

4. 讲练结合法

讲授充分发挥教师主导作用,引导学生自主学习。练习让学生从多角度对所学定理进行认知,及时巩固所学的知识,锻炼了解决实际问题的能力,发挥出学生的主观能动性,成为学习的主体。

四、说学法

学生学法主要有观察、分析、发现、自主探究、小组协作等方法。经教师启发、诱导,学生通过观察与分析去发现并证明余弦定理,培养归纳与猜想、抽象与概括等逻辑思维能力,训练思维品质。

五、教学目标

(一)知识目标

1、使学生掌握余弦定理及其证明。

2、使学生初步掌握应用余弦定理解斜三角形。

1

(二)能力目标

1、培养学生在本专业范围内熟练运用余弦定理解决实际问题的能力。

2、通过启发、诱导学生发现和证明余弦定理的过程,培养学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

3、通过对余弦定理的推导,培养学生的知识迁移能力和建模意识,及合作学习的意识。

(三)德育目标

1、培养学生的爱国**精神、及团结、协作精神。

2、通过三角函数、余弦定理、向量的数量积等知识的联系理解事物之间普遍联系与辩证**。

六、教学重点

教学重点是余弦定理及应用余弦定理解斜三角形;

七、教学难点

分析勾股定理的结构特征,从而突破发现余弦定理,应用余弦定理解斜三角形。 八、教学过程

教学中注重突出重点、突破难点,从五个层次进行教学。

创设情境、任务驱动;

引导探究、发现定理;

完成任务、应用迁移;

拓展升华、交流反思;

小结归纳、布置作业。

(一)、导入

1、教师创设情境设置二个任务,做为贯穿本课的主线和数学与专业有机结合的钮带,通过完成这二个任务,达到掌握余弦定理并学会应用的目标。

2、通过与直角三角形勾股定理引出余弦定理(快乐起点) 经教师启发、诱导,学生通过探索研究,合理猜想来发现余弦定理。

(二)、新课

3.证明猜想,导出余弦定理及余弦定理的变形

经过严密逻辑推理证明得出余弦定理,这一过程中,锻炼了学生观察、分析、归纳、猜想、抽象、概括等逻辑思维能力。

4. 解决二个任务

5. 操作演练,巩固提高。

6.小结:

通过学生口答方式小结,让学生强化记忆,分清重点,深化对余弦定理的理解。

7.作业:

分层布置作业,根据不同层次学生将作业分为必做题和选做题。使不同程度的学生都有所提高

九、板书设计

板书是课堂教学重要部分,为再现知识体系,突出重点,将余弦定理知识体系展示在板书中,利于学生加深印象,理清思路。

十、课后反思

在教学设计上,采用任务驱动,教师精心设计与机械专业相关联的二个任务,作为贯穿整节课的主线,通过具体任务的完成,即提高学生学习的兴趣,又激发求知欲;知识点学习则循序渐进,符合学生的认知特点。经教师启发、诱导,学生通过观察、分析、发现、自主探究、小组协作等方法在获取新知的同时,培养了归纳与猜想、抽象与概括等逻辑思维能力。

余弦定理说课稿2

一、教材分析

1.地位及作用

"余弦定理"是人教A版数学必修5主要内容之一,是解决有关斜三角形问题的两个重要定理之一,也是初中"勾股定理"内容的直接延拓,它是三角函数一般知识和*面向量知识在三角形中的具体运用,是解可转化为三角形计算问题的其它数学问题及生产、生活实际问题的重要工具具有广泛的应用价值,起到承上启下的作用。

2.教学重、难点

重点:余弦定理的证明过程和定理的简单应用。

难点:利用向量的数量积证余弦定理的思路。

二、 教学目标

知识目标:能推导余弦定理及其推论,能运用余弦定理解已知"边,角,边"和"边,边,边"两类三角形。

能力目标:培养学生知识的迁移能力;归纳总结的能力;运用所学知识解决实际问题的能力。

情感目标:从实际问题出发运用数学知识解决问题这个过程体验数学在实际生活中的运用,激发学生学习数学的兴趣。通过主动探索,合作交流,感受探索的乐趣和成功的体验,体会数学的理性和严谨。

三。 教学方法

数学课堂上首先要重视知识的发生过程,既能展现知识的获取,又能暴露解决问题的思维。在本节教学中,我将遵循"提出问题、分析问题、解决问题 "的步骤逐步推进,以课堂教学的**者、引导者、合作者的身份,**学生探究、归纳、推导,引导学生逐个突破难点,师生共同解决问题,使学生在各种数学活动中掌握各种数学基本技能,初步学会从数学角度去观察事物和思考问题,产生学习数学的愿望和兴趣。

四、 教学过程

本节教学中通过创设情境,充分调动学生已有的学习经验,让学生经历"现实问题转化为数学问题"的过程,发现新的知识,把学生的潜意识状态的好奇心变为自觉求知的创新意识。又通过实际操作,使刚产生的数学知识得到完善,提高了学生动手动脑的能力和增强了研究探索的综合素质。

帮助学生从*面几何、三角函数、向量知识等方面进行分析讨论,选择简洁的处理工具,引发学生的积极讨论。你能够有更好的具体的量化方法吗?问题可转化为已知三角形两边长和夹角求第三边的问题,即:在 中已知AC=b,AB=c和A,求a.

学生对向量知识可能遗忘,注意复习;在利用数量积时,角度可能出现错误,出现不同的表示形式,让学生从错误中发现问题,巩固向量知识,明确向量工具的作用。同时,让学生明确数学中的转化思想:化未知为已知。将实际问题转化成数学问题,引导学生分析问题。在 中已知a=5,b=7,c=8,求B.

学生思考或者讨论,若有同学答则顺势引出推论,若不能作答则由老师引导推出推论,然后返回解决该问题。

让学生观察推论的特征,讨论该推论有什么用。

《余弦定理》说课稿3

今天我说课的内容是空间直角坐标系,下面我分别从教材分析、教学目标的确定、教学方法的选择和教学过程的设计这四个方面来阐述我对这节课的教学设想。

一、教材分析

本节内容选自人民教育出版社出版的普通高中课程标准实验教科书《数学》必修五的第一章第2节,属于三角函数领域的知识。在此之前学生已经学习过了勾股定理、平面向量、正弦定理等相关知识,这为本节内容的学习起着铺垫作用。本节内容实质是学生已经学习的勾股定理的延伸和推广,是研究解三角形的基础,它描述了三角形重要的边角关系,将三角形的“边”与“角”有机的联系起来,实现边角关系的互化,为解决任意三角形中的边角求解问题提供了一个重要的工具,同时也为在日后学习中判断三角形形状,证明三角形有关的等式与不等式提供了重要的依据。因此,余弦定理在三角函数中,占据十分重要的地位。

在本节课中教学重点是余弦定理的内容和公式的掌握,余弦定理在三角形边角计算中的运用;教学难点是余弦定理的证明以及基本应用;教学关键是余弦定理在三角形边角计算中的运用。

基于以上对教材的认识,根据数学课程标准的“学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者”这一基本理念,考虑到学生已有的认知结构和心理特征,制定如下的教学目标:

二、教学目标的确定

知识与技能:

(1)了解余弦定理的内容及公式;

(2)能初步应用余弦定理解决一些有关三角形边角计算的问题。

过程与方法:

(1)掌握余弦定理的向量证明方法;

(2)经历利用向量证明定理的过程与方法,体会向量运算的强大威力。

情感态度与价值观:

(1)在探究余弦定理的过程中培养学生用数学观点解决问题的能力和意识;

(2)培养学生严谨准确的数学逻辑思维能力。

三、教学方法的选择

基于本节课是高中数学中的原理教学,根据布鲁纳的发现学习理论,本节课将主要采用“启发式教学”的教学方法即从证明全等三角形的问题出发,发现无法仅仅使用刚学习的正弦定理解决全等三角形判定的理论证明,造成学生在认知上的冲突,产生疑惑,从而激发学生的探索新知的欲望,之后进一步启发诱导学生分析,综合,概括从而得出原理解决问题,最终形成概念,获得方法,培养能力。

在整个教学过程中,先抛出问题让学生进行思考,引起学生的兴趣,不仅使学生在整个学习探究过程中了解到知识的发生、发展的过程,也使学生尝到了成功解决问题的喜悦,对于增强学生学习数学的信心,起到了很好的作用。

在教学中教师利用计算机多媒体软件Powerpoint等辅助教学,充分发挥其快捷、生动、形象的特点。

四、教学过程的设计

(一)回顾旧知,设疑导入

教师让学生回顾证明三角形全等的判定定理,发现初中学习阶段并未给出判定定理的理论证明,然后教师立马指出利用刚刚学习的正弦定理,可以解决三角形全等判定定理:AAS、ASA的理论证明。但是三角形全等判定:SSS和SAS的理论证明却不可以用已经学习过的三角形知识证明,那又应该去怎样证明呢?

(二)探索新知,理解新知

教师直接板书演《山草香·》示利用平面向量的知识证明余弦定理。再任给三角形,变化字母,让学生体会公式的结构不变性和字母可变性。

余弦定理本质内容:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍。

余弦定理公式的本质:边32=边12+边22-2×边1边2×cos(边1边2的夹角)

通过简单的例题,教师向学生揭示余弦定理的本质,可以充分使学生对余弦定理以其公式有深刻的认识。

教师带领学生继续探索定理中的奥妙,发现余弦定理中两边夹角的不同影响着三边的关系:

当两边的夹角是90度时,余弦定理的公式就写作:a2+b2=c2;

当两边的夹角是锐角时,余弦定理的公式就写作:a2+b2>c2;

当两边的夹角是锐角时,余弦定理的公式就写作:aa2+b2

由此可知余弦定理是勾股定理的推广,勾股定理是余弦定理的特例。

(三)解决问题,巩固新知

教师及时给出两道例题,学生自主做题,再由老师板书演示解答例题,最后引导学生总结余弦定理解决解三角形问题的基本应用:

①已知三角形的任意两边及其夹角可以求第三边;

②已知三角形的三条边可以求出三角。

小结及课后作业

还可以利用其他方法证明余弦定理,请有兴趣的同学进行探究,教师提示:建立直角坐标系,可以进行类似向量法的证明;几何方法也可以证明余弦定理。

老师带领学生复习本节课的内容:

(1)余弦定理内容的本质:三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍;余弦定理公式的本质:边32=边12+边22-2×边1边2×cos(边1边2的夹角);

(2)余弦定理是所有三角形边角之间普遍存在的共同规律,而勾股定理是余弦定理的特例;

(3)余弦定理的基本应用:a.已知两边及它们的夹角,求第三边;b.已知三边求三角。

布置本节课的作业:8页第一第二大题

以上所说只是我预设的一种方案,但课堂是千变万化的,会随着学生和教师的临时发挥而随机生成。预设效果如何,最终还是有待于真正课堂教学实践的检验。

20 2083155
");