四年级数学教学论文(精编3篇)

网友 分享 时间:

【导言】此例“四年级数学教学论文(精编3篇)”的教案资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

四年级数学教学论文范文:兴趣是学生学习的动力1

孔子曰:“知之者不如好之者,好之者不如乐之者。”兴趣是学生学习的动力之一。如何激发学生的学习兴趣,唤起学生的主观能动性,这是素质教育的一个重要问题。信息技术(包括各种应用软件、多媒体、网络等)在社会上的广泛传播已经不可避免地对传统的教育观念和教学方法形成了强烈的冲击。从目前社会发展趋势不难看出,如何将课程体系、教学内容和教学手段建立在现代化教育技术的平台上,已成为当前形式下教育改革和发展的一个重要方向。作为重要基础课之一的数学,为能在有限的课时内,形象生动的将最精华的内容介绍给学生,提高课堂的教和学的效率,教师在信息技术上应用能力的提高尤为重要。下面就我们在备课、课堂教学、学生的课后学习等几个方面谈谈我的做法和体会,希望能引起同行就此课题的讨论,提高我地区学校的基础课教学水平。

—、 利用丰富的电子资源库,优化课堂教学设计

优化课堂设计是提高课堂教学效率的前题,课堂教学设计是教师在备课的过程中,系统的分析教学内容,研究教学对象,确定教学目标,选择适当的教学方法和媒体,设计解决问题的步骤,分析评价结果的过程。人们常用“一桶水“和“一杯水”的关系来形容教师为上好一堂课所应具备的广博知识和丰富内涵。因此我平时注意对互联网上信息的查阅和保存。逐渐建立自已的资源库。以提高备课效率,增大信息量。

1、电子化的备课笔记

采用计算机排版的备课笔记,其优点是有利于在教学法中随时根据实际需要增、减和更新授课内容,同时保证教案的完整性。并可以更好满足多媒体等现代化教学手段的需要,方便制作多媒体授课课件。而可通过适当的排版,在打印稿上可以如传统的备课本一样予留足够空间用于对授课内容进行适当补充,以及采用不同颜色进行标记,方便课堂讲授。教案还可以适当调整后拷贝给学生,使学生在上课时能将主要精力放在听课而不是记录上,提高教学效果。此外,也可以适当减轻次年的备课工作量。原则上只需要根据上年的各种记录及学科的发展在计算机上适当增加或减少内容即可。

2、丰富多彩的数码影像资料

数学所涉及的常为一些抽象的、描述性的内容,按传统方式进行授课学生不易直观理解和接受。为此我利用空余时间用powerpoint等工具制作了许多教职工学课件,用图象,影音文件等资料丰富课件内容,同时,用网上下载一些关于数学的FLASH小游戏,以便在课堂上让学生参与互动。

二、 利用多媒体课件辅助教学,突出重点、化解难点,提高课堂教学效率

在教学中,有些重点往往不易突破,主要原因是少年儿童的生活经验不丰富,观察事物不容易全面具体。因此教师要采用比较容易使学生接受的教学过程,达到知识迁移的目的。多媒体正是具有形声、动画兼备的优点,在创设情境,营造氛围方面比其他媒体来得更直接、更有效。例如:教学“三角形全等”这一章时,首先让学生按已知两边和一夹角画一个三角形,然后剪下,看是否能重合。而后用电脑出示一些形象的FLASH游戏,例如输入三角形的夹角和两边,电脑便会自动生成三角形,输入两次数据后,便得到两个三角形,拖动鼠标,看这两个三角形能否重叠。成功后会得到电脑的夸奖:“真聪明”,同时观察到物体的表面变成了另一种颜色。而没有成功的学生会听到电脑的提示:“不要着急,再来一次。”多媒体的这种设置不仅使做对的学生得到成功的喜悦也会使做错的学生不气馁从而产生积极寻求正确答案的意识。

由于已经创设了激发学生兴趣的情境,在电脑演示之后,教师提出问题一步一步引导学生回答出三角形全等的含义,学生会兴趣盎然地讨论、总结,然后归纳。从而使枯燥的概念化为具体的形象,学生不断会顺理成章的接受而且很容易就记住了这个概念。这样即调动了学生的学习兴趣又激发了学生的强烈的参与意识,同时也达到了教师的教学目

熟读唐诗三百首,不会做诗也会吟。山草香为大家分享的3篇4年级数学教学论文就到这里了,希望在四年级数学教学论文的写作方面给予您相应的帮助。

四年级数学教学论文范文:浅谈数学的创造性学习2

什么是数?

开天辟地之初,人类就开始与数打交道。数即是数目的意思。正如《汉书·律历志上》云:“数者,一十百千万也。”

数进入数学体系就成为它的最基本概念之一,数的概念是随着人类的生产和生活实践的不断发展而逐渐形成的,并且永无止境地发展着。从古至今,以自然数为开端,接着是有理数与无理数、正数与负数、实数与虚数,直至复数,共同构成数的概念不断拓展的系列。每一次拓展都是一次创造思维的跃升。

什么是数学?

数学是研究现实世界的空间形式和数量关系的科学。古时候,人类在生产和生活实践中便获得了数的概念和一些简单几何形体的概念。自此开始,到16世纪,创立了包括算术、初等代数、初等几何和三角的初等数学。17世纪引入变量概念是数学发展史中的转折点,这使得运动和辩证法进入数学,开始研究变化中的量与量之间相互制约关系和图形间的相互变换。近年来,由于数学在自然科学和技术领域的广泛应用,又由于计算技术的迅猛发展,数学对人类认识自然和改造自然的重要作用也显示得更加清楚了。至今,现代数学已经形成了包括数理逻辑、数论、代数学、几何学、拓扑学、函数论、泛函分析、微分方程、概率论、数理统计、计算数学及边缘学科运筹学、控制论等在内的庞大体系。

与数的发展一样,数学发展史也是创造思维不断发展的历史。

数学是中小学生的主科。数学学习是中小学生增长学习能力和创造能力的广阔天地。

一。驴唇怎能对得上马嘴呢

阴错阳差的巧事,张冠李戴的误会,在大千世界,这等笑话,时有发生。可是,在数学课上,难道也会发生驴唇不对马嘴的事情吗?

(一)平地起风雪

话题是从一道浅显的代数题引发的。这是一个发生在某中学初一新生的一节数学课上的小故事。快下课时,老师出了一道题:“若a为自然数,说出a以后的7个连续自然数。”一个小女孩举手抢答:“a,b,c,d,e,f,g。”话音刚落,便引起哄堂大笑,老师也愕然了。女孩觉察到,自己的答案,驴唇不对马嘴。出了笑话,落个满脸通红。

接着,一个男孩起来补正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。”尔后,下课铃响了。

事情平平常常。一个女孩答错了题,一个男孩纠正过来,全班同学都明白了正确答案。下课,大家就都散了。

那么,这件事是否到此就算了结了呢?

请思考10分钟,然后,发表你的见解。

单兵——我看是了结了。老师完成了教学任务,学生也完成了学习任务。

焦小敏——如果说没有了结,那就是老师还得教育同学们,不要把这事当成奚落那位小姑娘的笑柄。

张娟——还有,班上的同学也有义务鼓励那位小姑娘。

赵燕——直截了当地说,我认为没有了结。因为任何结果都有原因。小姑娘答成“a,b,c,d,e,f,g”这是她思维的结果。那么,她一定有个由此及彼的思维过程,其中深藏着错误的原因。老师与那个小姑娘的任务是找出原因,避免再错。如若不然,再遇类似问题,也许她又答成“甲、乙、丙、丁、戊、己、庚” 呢。

肖冬春——我同意这种看法。换句话说,知道男孩答案正确,并不等于找到自己的错误原因。

韩小彧——前面几位同学的发言,从不同的角度,各有各的道理。但是,又都有一个绝对化的框框束缚着。这就是姑娘的答案一无是处;小男孩的答案绝对正确,天衣无缝。这个框框正是上面5个发言的潜在的共同前提。当然,错误答案之正确部分及正确答案之不足部分,如果真有,我现在还未想出。

赫峰——她提出的问题,是一条崭新的思路,很有启发。我发现小姑娘的答案中有一个合理的因素,7个字母与题目要求的7个自然数合得上。

曹博——这么说来,错误答案中的合理因素,可不止这一个。题目要求“a以后”,按照英语字母表由b到g都在a以后。

姚树——题目要求“连续”,按英语字母表,从a到g是连续的,并没断开,也没跳跃。

祝越——7个符号都可以表示自然数。这一点。也是符合题目要求的。

李河——这么说来,“a以后”、“7个”、 “连续”、“自然数”4大要素都合乎题目要求,错在哪里呢?

讨论至此,真是平地起风云。看来已经结束的问题,却又引出一片新话题。况且本来被公认为绝对错误的答案,现在却找不到一点破绽了。

(二)罕见的对话

正像大家的看法一样,当堂听课的主任觉察到:这件事并未结束。

下课后主任与老师讨论,老师认为“a+1”到“a+7”是唯一正确的答案,全班已懂,教学任务已告完成。主任又去问学生。大家说那个小女孩在小学时,特别喜欢英语。主任领悟了:小学时只是在英语学习中才见到过a,题目似乎要求写出“a以后的7个”来,自然,a,b,c,d,e,f,g”在头脑中出现了,又在口中说出了。这正是心理学上所说的副定势起了作用。

尔后,主任将女孩找到办公室。先肯定她喜欢英语,大胆举手的优点,接着是双方一连串的对话。

“那题明白了吗?”

“明白了。”

“你的答案呢?”

“全错了。”

“一点对的地方也没有?”

“没有。”

“一丁点儿都没有?”

“没有。”

“真的吗?”

“我没想过。”(唉!没有想过就坚定地认为自已全错了!)

“现在想想看。”

“想不出。”

“b,c,d,e,f,g,不是在a以后吗?”

“是”。

“字母不是说了7个吗?”

“是”。

“7个字母,排列有序,为什么不跳着说呢。”

“题目上说……”

“你看,‘a以后’、‘7个’、‘连续’,都有了。这些字母又都能表示自然数。那么,哪有错的地方呢?”

“咦,怎么没有错的地方了呢?”

最后,在主任启发下,发现了错误:对于这些字母,没有给出符合题意的数学含义。一句话,把英语字母转化为数学符号的任务,没有完成。

找出错误原因,就能纠正错误。简单说,将7个英语字母赋予符合题意的数学含意就是了。这样,找到了与众不同的答案:若a为自然数,令a'=a+1,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,则a',b,c,d,e,f,g”便是正确答案。

就是这样,正确与错误之间,只有一小撇之差。

还应指出,运用这种灵活变通的思维方式,求解此题,正确答案是无穷尽的。即使是“甲、乙、丙、丁、戊、己、庚”,只要将其赋予符合题意的数学含义,也能成为正确答案。这么看来,把“a+1,a+2,a+3,a+4,a+5,a+6,a+7”看成唯一正确答案,失之于思维呆板,并且导致片面性和绝对化。

(三)深刻的启示

中小学生在数学学习中,错误常见,改错也常见。但是,这样的改错方式从未见过。

这样的改错方式给我们的启示是深刻的,是多方面的。

1.在变通性的动态思考中更深刻地掌握数学新原理

掌握数学概念和原理,运用相关概念、原理解答数学问题,从而获得系统的数学知识,提高思维能力,这是数学学习的基本任务。

用符号表示数是代数学的根本特点。在小学算术中只用阿拉伯数字表示固定的具体数目。而在中学代数中,就要用抽象符号表示多种多样的数学含义。用符号表示数的课题,是代数起始课的重点和难点。上面的题,正是为了使学生掌握这个代数原理而设计的。

两种改错方式对理解原理的作用是不同的。先看一般方式:

a,b,c,d,e,f,g→a+1,a+2,a+3,a+4,a+5,a+6,a+7

再看变通方式:

a,b,c,d,e,f,g→令a'=a+1,b=a+2,c=a+3,d=c+4,e=a+5,f=a+6,g=a+7→a',b,c,d,e,f,g

后者增加“令a'=a+1,……,g=a+7”的一步,同时也就增加了“a'~g”的新的答案形式,最后回到“a+1,……,a+7”的答案。中间增加两步推导,都运用了“符号表示数”的原理。这样,也就加深了对这一原理的理解。

总之,对比两种处理方式,后者更有利于数学知识的掌握和学习能力的提高。

2.创造思维能力在运用中得到增长

运用变通性方式改错,不仅有利于学习能力的提高,也有利于创造思维能力的增长。

变通性改错方式,加大了思维难度,是进行发散思维而获得的结果。当然,这也不是唯一的结果。更为重要的是:原来被认为解法唯一,现在变成无穷了。这就启发我们提出问题:

(1)数学概念和数学原理统统都是永恒不变的吗?其表述方式是唯一的吗?

(2)被认为只有一种解答方法的数学题是统统都不会有第2、第3种解决方法吗?

当我们对这两个问题得出“不见得”的结论时,那么对今后的数学学习产生的影响,也就在其中了。即不以固定方式掌握数学概念、原理和题目解法为满足,而还要运用创造思维的发散性、灵活性,对每一个数学课题予以审视,积极发掘可能蕴含着的新内容、新方法、新的推理和新的表达方式。

这样坚持下去,就会收到数学学习能力与创造思维能力同步超常增长的效果。

四年级数学教学论文范文:如何培养小学生的数学兴趣3

小学生对学习产生兴趣,才能促使他们主动地学习,子曰:知之者不如好之者,好之者不如乐之者。一般地说,人类对韵律、节奏、语言和美的感受有一种与生俱来的本能。所以语文、音乐、美术等学科较之数学来讲,学生更感兴趣,而数学高度的抽象性常常使学生难以理解,对数学望而生畏,因此不容易对数学产生兴趣。《数学课程标准》提出了要对学生培养数学兴趣的要求;提出了“使学生具有学习数学的兴趣,树立学好数学的信心。使他们体会到数学就在身边,感受到数学的趣味和作用,对数学产生亲切感。”由此可见,如何使学生对数学产生理趣是个值得探讨的课题。

一、在活动中的生趣

1. 在应用活动中生趣。数学是一门应用性很广的学科,教师要使学生了解数学知识的应用价值,使学生感到数学就在身边,从而产生学习兴趣。如在学习百分数知识时,教师要求学生搜集饮料瓶、商品外包装上的百分数;搜集日常生活中的百分数(如在报纸上写着的百分数),让学生解释含义,从而加深了学生对数学知识的理解,使学生了解到生活离不开数学知识,培养学生分析问题、解决问题的能力,同时又使学生进一步关注以后生活中的百分数。再如讲到“比的意义”这一节时,可让学生了解^***中大致的比,如拳头的周长与脚长之比是1:1,身高与胸围的长度之比为2:1,身高与脚长之比为7:1,体重与血液重量的比为13:1,知道这些有趣的比,你能用这些知识解决哪些问题?学生兴趣高涨,动手实践,计算验证。

2. 在操作活动中生趣。小学生的特点是活泼发好动,他们的思维发展处于从形象思维到抽象逻辑思维过渡阶段,因此教师在教学时必须创造条件,让学生动手操作,通过摆弄学具,帮助学生获取知识解决问题。例如在教学圆形面积时,先让学生动手把圆形转化成学过的图形,然后说一说学过图形与圆形之间的关系,最后教师进一步引导学生联系操作过程得到圆形面积=πr2。这种从动手操作到语言叙述,从语言叙述到公式的得出,就是由直观到抽象、由具体到概括的过程。在这种有教师指导下的实践活动中,学生手脑并用,发现和解决了数学问题,参与了获取知识的全过程,学得积极、主动,尝到了探求知识的乐趣。

3. 在情境活动中生趣。数学教材有自己的特点,蕴含着丰富的可产生学生兴趣的因素。苏霍姆林斯基认为:“接近和探究事物本质及其因果联系的实质,这一过程本身乃是兴趣的源泉。”教师应挖掘这些因素,充分发挥教材中内在的潜力作用,创设情境,使学生产生兴趣。例如在教学能被3整除的数的特征时,由学生出题,教师与学生比赛,看谁判断快,学生对教师的“秘诀”产生了兴趣,迫切想要了解,强烈的求知欲望已经成为一种求知的“自我需要”。随着新课改的推进,各种情境的创设已越来越重视,特别是利用多媒体设计情景,学生的兴趣被激发,课堂效率大大提高。

4. 在课外活动生趣。课外活动能创造一个非常自由、生动活泼的学习环境,学生可以根据自己的兴趣自愿参加,因此它比课堂教学更加开放,更有利于因材施教。如开展数学游戏活动,在游戏中探索教学规律,发现规律,增强学习兴趣。又如向学生介绍一些数学小知识,如古老的数学计算方法、数学符号来源,数学家们的生活片断、诗歌中的数学,让学生领略数学的丰富世界,受到数学文化的熏陶。

二、在感悟中激趣

外在活动引发的兴趣只是暂时的,教师应引导学生内化为对数学内涵的欣赏和追求,让学生从感悟中领略数学的魅力。

1. 感悟“美”。数学中的美不同于美术中的线条、造型、色彩的视觉美,不同于体育中的体形、动作、力量的运动美,也不同于各种的音响、节奏、旋律的听觉美。数学本身的内在美瑰丽多姿,充分挖掘数学中的美,让学生进行体验并感悟,能激发学生的学习兴趣。如在数学对称图形时,出示一幅幅对称美丽的画面,在学生的赞美声中教师进行引导:为什么大家对这些图形都说美,是数学中对称的神奇力量。从而让学生透过美的现象,感悟到数学的对称美。又如在教学加法结合律时,用语言是这样叙述的:三个数相加,先把前两个数相加,再加上第三个数;或先把后两个数相加,再加第一个数,它们的和不变。用字母来概括就是(ɑ+b)+c=ɑ+(b+c),引导学生进行比较。用数学方法来表示太简洁了,从而感悟到数学中的简洁美。当然数学中还有许多的美(如统一美、奇异美等),教师应充分挖掘这些美的资源,激发学生兴趣。

2. 感悟“趣”。学生能感悟到数学是有趣的,必将激发学生的学习兴趣,即使在苦在累也是乐而不疲。

①巧用修辞手法激趣。有时对数学资源运用比喻、拟人等手法,使学生兴趣倍增。如在教学被减数中间有0的连续退位减法中,戏称0为大方的穷光蛋,这一比喻,不但把本课时中的难点凸显了出来,学生的兴趣一下子高涨了,下课后还谈论着这一有趣的称呼。风趣的语言,恰当的手法让枯燥乏味的数学变得有趣生动,使数学更具吸引力。

②找有趣数学现象更能激发学生的兴趣。如在教学两位数乘两位数时,为了巩固计算方法,必须进行练习,但大量的练习往往枯燥乏味,有位教师充分利用回文算式的趣味性,激发了学生的兴趣,当学生知道计算方法后,出示了63×12,21×36,14×82,28×41四题,计算后发现了什么规律,你能创造这样的有趣算式吗?没有一个学生不想计算的,纷纷进行笔算寻找。因此,我们在教学中充分挖掘数学中的一些有趣现象,如数字黑洞、回文数等,让这些材料成为数学课堂中的有趣的教学资源。

3. 感悟“理”。数学是一门理性的学科,它需要思考、分析、推理,用科学的方法来说明理由,用辨证的观点来分析事物解决问题。如果能让学生感悟到数学的理,必将激起学生对数学学科的兴趣。

①在深入分析中感悟。在对一些生活现象用数学进行分析、思考,让学生领略到数学的理性。如小摊上转圈摸奖活动,让学生运用概率的初步知识,计算后才知道中大奖的可能性很小,也就明白了为什么每次总是拿出去的钱多,回收到的钱少,揭穿了老板赚钱的方法,让学生感悟到用数学知识冷静的思考、分析才能看清事物的真面目。

②在辨证的思想中感悟。辨证的看待事物才能看出事物的实质,才能灵活的运用方法。如在教学小数和分数相乘时,学生通过独立思考提供了多种方法,有把小数化分数,同除以一个数后计算,分数化小数计算等等,然后共同分析在什么情况下用哪种方法合适,每种方法有哪些优点和缺点,让学生辩证的看每一种方法,从而达到灵活运用。在这一过程中用辩证的方法感悟到数学的理性。

③在探索推理活动中感悟。在教学三角形内角和时,课本上提到了用量角度数相加,剪角相拼和折拼这三种方式,然而这三种只是从操作上得到,因此有一定的误差,有学生对内角和是180度不信服,此时可引导进行推理验证。先出示长方形,用对角线分成两个任意直角三角形,得到任意直角三角形内角和是180度,然后让学生探究任意三角形内角和也是180度,可将任意三角形分成两个直角三角形,两个直角三角形内角和为360度,然后减去两个直角180度,正好等于180度。通过这样严密的推理,让学生心服口服,让学生感悟到数学的理。

三、在激励中促趣

有人曾说过,没有什么东西比成功更能增加满足的感觉,也没有什么东西比成功更能鼓起进一步求得成功的努力。一次次的成功就会给学生带来无限喜悦和美好的憧憬,从而可不断地提高学生对数学的兴趣。

1. 设计不同层次的练习,让学生体验成功。教师应设计适合不同能力水平的作业,使广大学生都能得到相应的成绩,让学生的学习水平得到充分的发挥。如6□7>649,□里可以是( )。对于差生只要求能够填出几个,对于中等生能够全部填出,对于优等生应概括出方法,让不同层次的学生都有不同的发展。这种形式的练习题让差生吃得了,中等生吃得饱,优等生吃得好,充分调动学生的学习积极性。

2. 积极评价,体验成功。苏霍姆林斯基认为:在人的心灵深处有一种根深蒂固的需要,那就是使自己成为一个成功者。小学生很在乎教师的评价,因此教师给予学生多一些鼓励性的评价,尤其学生在数学学习中有进步时,教师应及时对其激励性评价。俗话说得好:“良言一句三九暖,冷言一句三伏寒。”教师应时刻注意自己的言行,切莫让自己的评价使学生对学生数学失去兴趣。

学生对数学理趣的产生并非一朝一夕就能实现的,需要慢慢的积累和影响,一旦学生对数学产生了兴趣,那么学生会对学好数学产生很强的自信心,会不懈的学习数学知识,甚至会在数学中做出一些贡献。

20 910189
");