《整式》教案(汇总8篇)

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“《整式》教案(汇总8篇)”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

《整式》教案【第一篇】

教学目标

1、 通过归纳、类比,经历单项式、多项式概念的发生过程。

2、 了解单项式、多项式、整式的概念。

3、 理解单项式的系数和次数的概念。

4、 理解多项式中项、项的系数、多项式的次数等概念。

了解整式在解决实际问题中的应用。

教学重点

单项式、多项式及其相关概念。

教学难点

单项式、多项式相关概念中的系数、次数的概念容易混淆,尤其是系数还包括符号,是本节教学的难点

教学方法

启发式 教学

用具

多媒体

教学过程

集体备课稿 个案补充

一、 新课引入

1.、x的-3倍是_________。

2. 正方形的边长是a,长方形的面积是正方形面积的2倍,那么长方形的面积是_______

3. 商店里卖出a台电脑,每台b元,商店共获利_______元。

4. 已知长方体的长和宽都为y,高为x,则长方体体积的- 倍为________.

二、 教师引入概念

单项式

思考-3x,2a2,ab, 这些代数式是怎样组成的。?有什么共同特点?

教师总结:

1、由数与字母或字母与字母相乘组成的代数式叫做单项式,单独一个数或一个字母也叫单项式。如:a,1,0等。

2、单项式中的数字因数叫做这个单项式的系数。

教学反馈1:完成P99----1,

多项式

由几个单项式相加组成的代数式叫做多项式

1) 在多项式中,每个单项式叫做多项式的项

2) 不含字母的项叫做常数项

3) 次数最高的项的次项叫做这个多项式的次数

4) 问:a2+3a-2的项分别有 ,常数项是 ,最高次项的次数为

5) a2+3a-2为二次三项式

教学反馈2:完成P98-----2. P99------3

整式

单项式、多项式� 求

(1) 花坛的周长L

(2)花坛的面积Sa

解 (1)L=2a+2派r

(2)花坛的面积是一个长方形的面积一两个半圆的面积之和,即S=2ar+派r2

教学反馈4:1、有长为L的篱笆,利用它和房屋的一面墙围成如入形状的园子,园子的宽为t。

(1) 用关于L,t的代数式表示园子的面积;

(2) 当L=100m,t=30m时,求园子的面积。

2、设在排成每行7天的日历表中某个数是a,那么它下方第1个数是几?用代数式表示。这是几次多项式?若a表示7月16日,那么它下方第1个数表示几月几日?

四、 总结本节课的收获(学生回答)

五、 提高探究

已知n是自然数,多项式yn+1+3x3-2x是三次三项式,那么n可以是哪些数?

六、小结、布置作业

初一数学《整式》教案【第二篇】

教学习目标

一、知识与技能

(1)能用代数式表示实际问题中的数量关系。

(2)理解单项式、单项式的次数 ,系数等概念,会指出单项式的次数和系数。

讲授法、谈话法、讨论法。

教学重点

单项式的有关概念

教学难点

负系数的确定以及准确确定一个单项式的次数

课前准备

教师准备教学用课件。

教学过程

一、新课引入

教师操作课件,展示章前图案以及字幕,学生观看并思考下列问题:

1、青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的行驶速度是100千米/时,在非冻土地段的行驶速度可以达到120千米/时,请根据这些数据回答下列问题:

(1)列车在冻土地段行驶时,2小时能行驶多少千米?3小时呢?t小时呢?

(2)在西宁到拉萨路段,列车通过非冻土地段所需要时间是通过冻土地段所需要时间的倍,如果通过冻土地段所需要t小时,能用含t的式子表示这段铁路的全长吗?

(3)在格里木到拉萨路段,列车通过冻土地段比通过非冻土地段多用小时,如果通 过冻土地段需要u小时,则这段铁路的全长可以怎样表示?冻土地段与非冻土地段相差多少千米?

分析:(1)根据速度、时间和路程 之间的关系:路程=速度×时间。列车在冻土地段2小时行驶的路程是100×2=200(千米),3小时行驶的路程为100×3=300(千米),t小时行驶的路程为100×t=100t(千米)。

(2)列车通过非冻土地段所需时间为小时,行驶的路程为120×(千米);列车通过冻土地段的路程为100t,因此这段铁路的全长为120×+100t(千米)。

(3)在格里木到拉萨路段,列车通过冻土地段要u小时,那么通过非冻土地段要()小时,冻土地段的路程为100u千米,非冻土地段的路程为120()千米,这段铁路的全长为[100u+120()]千米,冻土地段与非冻土地段相差为[100u-120()]千米。

思路点拨:上述问题(1)可由学生自己完成,问题(2)、(3)先由学生思考、交流的基础上教师引导学生分析怎样列式。

上述的3个问题中的数量关系我们分别用含有字母的式子表示,通过本章学习,我们还可以将上述问题(2)、(3)进行加减运算,化简。

kb2.下面,我们再来看几个用含字母的式子表示数量关系的问题。

用含有字母的式子填空,看看列出的式子有什么特点。

(1)边长为a的正方体的表面积为______,体积为_______.

(2)铅笔的单价是x元,圆珠笔的单价是铅笔的单价的倍圆珠笔的单价是_______元。

(3)一辆汽车的速度是v千米/时,它t小时行驶的路程为_______千米。

(4)数n的相反数是_______.

教师课堂巡视,关注中下程度的学生,及时引导,学生探究交流。

上面各问题的代数式分别是:6a2,a3,,vt,-n.

观察上面各式中运算有什么共同特点?

上面各式中,数字与字母之间,字母与字母之间都是乘法运算,它们都是数字与字母的积,例如:6a2表示6×a2,a3表示1×a3,表示×x,vt表示1×v×t,-n表示-1×n.

像上面这样,只含有数与字母的积的式子叫做单项式。单独的一个数 或一个字母也是单项式。如: -2,a, ,都是单项式,而 ,1+x都不是单项。

单项式中的数字因数叫做这个单项式的系数,例如: 6a2的 系数是6,a3的系数是1,-n的系数是-1,- 的系数是- 。

单项式表示数字与字母相乘时,通常把数字写成前面,当一个单项式 的系数是1或-1时通常省略不写。

《整式》教案【第三篇】

教学目标

1.知识与技能:

理解单项式与多项式相乘的算理,体会乘法对加法的分配律的作用和转化的数学思想;会进行单项式与多项式相乘的运算。

2.过程与方法:

在探索单项式与多项式相乘的过程中,体会利用乘法分配律化未知为已知的转化的数学思想。

3.情感态度与价值观:

使学生获得成就感,培养学习数学的兴趣。

教学重点难点

1.教学重点:

单项式与多项式相乘的运算法则及其运用

2.教学难点:

灵活地运用单项式与多项式相乘的运算解决数学问题。

教学过程

一、复习导入

1.如何进行单项式乘单项式的运算?

单项式的系数?相同字母的幂?只在一个单项式里含有的字母?

(系数×系数)×(同字母幂相乘)×单独的幂

计算:(2a2b3c)(-3ab)=-6a3b4c

2.应用运算律来计算:6×(+-)

二、新课讲解

探究新知

为了扩大绿地的面积,要把街心花园的一块长m米,宽b米的长方形绿地,向两边分别加宽a米和c米,求扩大后绿地的面积?

m(a+b+c)=ma+mb+mc

引导学生用自己的话叙述上面的运算过程,然后师生共同总结:

单项式与多项式相乘,先用单项式成多项式中的每一项,再把所得的积相加。

用公式表示上面的运算过程:m(a+b+c)=ma+mb+mc

通过乘法分配律,把单项式乘多项式转化成已经解决了的单项式乘单项式问题,这里体现了转化的数学思想。

三、典例剖析

例1.计算:

(-4x2)·(3x+1)注意:多项式中“1”这项不要漏乘。

(2) ( ab2-2ab) ·ab

学生解答各题,教师巡回指导,发现学生解题中存在的共同错误并点评,注意强调:

单项式乘以多项式要特别重视转化的过程,初学时这一步不要省略,以后熟练了可以逐步省略。

点评:

(1)多项式每一项要包括前面的符号;

(2)单项式必须与多项式中每一项相乘,结果的项数与原多项式项数一致(1不要漏乘);

单项式� 符号。

巩固法则

练习1下列计算对吗?若不对,应该怎样改?

(1) 3a(a-1)=3a2;

(2) 2x2(x-y)=2x3-2x2;

(3) (-3x2)(x-y)=-3x3-3x2y;

(4) (-5a)(a2-b)=-5a3+5ab.

练习2.填空

(1)单项式与多项式相乘,就是用单项式去乘多项式的________,再把所得的积________。

(2) 4(a-b+1)= ___________________。

(3) -3x(2x-5y+6z)= _____________________。

(4) (-2a2)2(-a-2b+c)=_____________________。

练习3计算

(1) (-3x)(2x-3y) (2) 5x(2x2-3x+1) (3) am(am-a2+1)

例2.计算

x(x2-xy+y2)-y(x2+xy+y2)

练习1:计算

x(x2-1)+2x2(x+1)-3x(2x-5)

练习2:化简求值

Yn(yn+9y-12)-3(3yn+1-4yn)其中y=-3,n=2

引导学生观察思考后,让学生尝试解答,之后教师展示示范,共同总结出方法:

计算代数式的值的一般步骤是先化简,再求值。

四、课堂小结

1.单项式乘以多项式的法则?

2.一种思想:单项式与多项式相乘的实质是把单项式乘以多项式转化为单项式乘法。

3.注意点:

(1)单项式分别与多项式的每一项相乘时,要注意积的各项符号的确定;

(2)不要出现漏乘现象;

(3)运算要有顺序:先乘方,再乘除,最后加减。有括号一般先去括号(小→大);

(4)结果要合并同类项。

五、布置作业

书上习题第4、7题

初一数学《整式》教案【第四篇】

一、内容及其分析

1、教学内容:整式的有关概念,即能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等。

2、内容分析:本节课要学的内容整式的有关概念指的是理解并掌握整式的有关概念,能够对一些整式进行分析,其核心是整式的有关概念,理解它关键就是要能从具体情景中抽象出数量关系和变化规律,使学生经历对具体问题的探索过程,培养符号感。。学生已经学过有理数的运算,本节课的内容整式的有关概念就是在此基础上的发展。由于它还与根式的运算有直接的联系,所以在本学科有重要的地位,并有不可忽视的作用,是本学科的核心内容。教学的重点是单项式的系数、次数,多项式的项数、次数等概念。解决重点的关键是通过对问题的解决使学生对单项式有个初步的理解,并归纳总结出单项式的次数和系数等概念。

二、目标及其解析

1、目标定位:理解并掌握整式的有关概念,能够对一些整式进行分析;

2、目标解析:理解并掌握整式的有关概念,就是指能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等。

三、问题诊断与分析

在本节课的教学中,学生可能遇到的问题是多项式的项数、次数等概念难以理解,产生这一问题的原因是单项式的项数、次数的影响。要解决这一问题,就要先分清单项式与多项式的区别,其中关键是能够正确判断单项式、多项式以及单项式的系数和次数、多项式的项和次数等。

四、教学支持条件分析

五、教学过程设计:

(一)。创设问题情境,激发学生兴趣,引出本节内容

问题1:填空,观察所填式子的特点:

(1)边长为x的长方形的周长是__________;

(2)一辆汽车的速度是v千米/小时,行驶t小时所走的路程是_______千米;

(3)若正方体的的边长是a,则它的表面积是_______,体积是________;

(4)设n是一个数,则它的相反数是________.

设计意图:通过此问题让学生知道可以用字母表示数,从实际问题中列出式子,体会数学来源于生活,从而体会整式的实际意义。

师生活动:

1、学生自己解决上述问题,然后观察所填式子,归纳其特点,进而初步理解单项式的概念。所填式子是4x、vt、6a2、a3、-n,特点是都是数字或字母的乘积。

2、、引导学生在观察的基础上归纳单项式的定义:

单项式:由数字或字母乘积组成的式子是单项式。

分析式子4x、vt、6a2、a3、-n得出:

单项式中的数字因数叫作单项式的系数(4x、vt、6a2、a3、-n的系数分别是4、1、6、1、-1);单项式中所有字母的指数和是这个单项式的次数(4x、vt、6a2、a3、-n的次数分别是1、2、2、3、1)。

例1: 用单项式填空,并指出它们的系数和次数:

(1)每包书有12册,n包书有___________册;

(2)底边长为a,高为h的三角形的面积是_________;

(3)一个长方体的长、宽都是a,高是h,它的体积是________;

(4)一台电视机原价是a元,现按原价的9折出售,那么这台电视机现在的售价为______元;

(5)一个长方形的长是,宽是a,这个长方形的面积是_________.

解:(1)12n,它的系数为12,次数是1;

(2) ,它的系数是 ,次数是2;

(3) ,它的系数是1,次数是3;

(4),它的系数是,次数是1;

(5),它的系数是,次数是1.

问题2:根据对单项式的理解,解决下列问题。 小明房间的窗户如图(1)所示,其中上方的装饰物由两个四分之一圆和一个半圆组成(它们的半径相同)。

图(1)装饰物所占的面积是______.

(2)某校学生总数为x,其中男生人数占总数的 ,男生人数为 ;

(3)一个长方体的底面是边长为a的正方形,高是h,体积是 。

设计意图:通过上面单项式的了解让学生再一次在实际问题中列出式子,对比看是不是与单项式相似,加深对概念的理解。

师生活动:

1、学生独立思考,分析第(1)个问题中装饰物是由两个四分之一圆和一个半圆组成,它们的半径相同,由图中的已知条件可知半径为 ,所以装饰物所占的面积恰好是半径为 的一个圆的面积即 ;(2)中男生人数为 x;(3)中这个长方体的体积是a2h.

2、引导学生在解决问题后,分析各个单项式的系数和次数,并进行交流,在交流中纠正一些不正确的想法。

(二)问题引申、探索多项式的有关概念

问题3:

填空,然后分析所填式子的特点:

1、温度由t°C下降5°C后是________°C;

初中七年级上册数学《整式》教案优质【第五篇】

一、教学目标。

1、知识与技能:理解单项式,单项式的系数,单项式的次数的概念,说出它们之间的区别和联系,并能指出一个单项式的系数和次数。

2、过程与方法:初步学会观察,对比,归纳的方法;发展学生的观察能力,思维能力及分析能力。

3、情感与价值观:培养学生合作交流意识,渗透数学知识源于生活,又为生活而服务的辩证思想。

二、教学设想。

本节属于概念教学课,力图体现概念形成的过程。本节课从生活中的实际问题引入,让学生经历由数字到用字母表示数家的过程,再提出问题,让学生列出相应关系式,学生探究式子的特点,从而引出单项式的概念。因此,课堂教学中,可以采用教师引导与学生参与相结合的方式,这样就可以促进师生互动,活跃课堂气氛,达到良好的教学效果。

三、教材分析。

本章属于《全日制义务教育数学课程标准(实验稿)》中的"数与代数"领域。整式是在以前已经学习了有理数运算的基础上引进的,本节内容由本章引言中的问题引出,在实际问题中逐步归纳单项式,单项式系数和单项式次数的概念,在了解概念的基础上准确指出一个单项式的系数及次数,内容衔接上循序浙进,让学生乐于接受。

四、重点,难点。

1、教学重点:单项式,单项式系数及单项式次数概念。

2、教学难点:区别单项式的系数和次数。

五、教学方法。

通过实际问题架设学习探索平台,教师采用点拨,引导的方法,启发学生经历主动思考,自主探索及合作交流的过程来达到对知识的"发现"和接受,进而完成知识内化,使书本知识成为自己的知识。

六、教学过程。

(一)创设情境,激趣导入。

问题1:举世瞩目的青藏铁路于2006年7月1日建成通车,是世界上海拨最高,路线最长的高原铁路。今天我们就来探讨这条铁路上有关路程的问题:

青藏铁路线上,在格尔木到拉萨之间有一段很长的冻土地段,列车在冻土地段的速度是100千米/时,在非冻土地段的速度可以达到120千米/时,问:列车在冻土地段的行驶时,2小时能行驶多少千米3小时能行使多少千米t小时呢?

根据速度,时间和路程的关系:路程=速度·时间则

它2小时行驶的路程:100·2=200(千米),

它3小时行驶的路程:100·3=300(千米),

它t小时行驶的路程:100·t=100t(千米),

字母t表示时间,用含有字母t的式子100t表示路程。

问题2:用含有字母的式子填空。解答教科书第54面思考题。

(1)6a2,a3(2)2。5x(3)vt(4)-n由此引和新课。

(二)合作交流,探索新知。

1、单项式概念的探索。

(1)以上几个式子有什么共同特征:

6a2是6×a×a的乘积。

a3是a×a×a的乘积。

是×x的乘积。

vt是v×t的乘积。

-n是-1×n的乘积。

归纳:都表示数与字母的积。

(2)引出单项式的概念:

①教学活动:

倾听、思考、分析、思考。

②师生互动:

列式解答、倾听、理解、思考、归纳。

倾听、理解概念、举例集体评议。

③学生活动:

从生活中的实际问题引入,激发了学生的学习兴趣,对新课起着过渡作用,由浅入深,对新知识的掌握起着循序渐进的作用。

培养学生的分析能力及表达,及时强调让学生对新知识掌握得更加完整。

培养学生的分析,思考及归纳能力,加深对概念的了解。

培养学生的评价能力,为概念的引出。

(3)让学生举出单项式的例子。

2、单项式系数和次数的探索。

问题1:以上单项式有什么结构特点。

由数字因数和字母因数两部分组成。

问题2:分别说出它们的数字因数和各字母的指数。

单项式中的数字因数,叫做单项式的系数。

一个单项式中,所有字母的指数的和,叫做这个单项式的次数。

交流练习:同桌之间一人举出单项式,另一人指出单项式的系数及次数。

教师巡视指导,请各别学生展示交流成果。

3,例题教学

教科书55页例1

学生独立解决后互相交流,最后教师归纳并在黑板上加以规范。

(三)练习巩固,熟练技能。

1、教科书第56页练习第1,2题。

2、下列各式:-x+3,6x,其中是单项式的是。

(四)总结反思,拓展延伸。

1、让学生谈谈本节课的收获。

2、通过今天的学习,你想进一步探究的问题是什么

七、板书设计。

整式

一、青藏铁路问题(略)。

二、单项式的概念。

单项式系数及次数的概念。

三、例题讲解

八、点评。

本教案的设计,符合学生的年龄特点,有利于学生探索重在让学生参与知识产生,发展,应用的全过程。让学生充分感知多项式及相关概念的形成过程,很发地发挥了学生的主体地位,但学生独立提出问题较少。

《整式》教案【第六篇】

教学目标和要求:

1.理解单项式及单项式系数、次数的概念。

2.会准确迅速地确定一个单项式的系数和次数。

3.初步培养学生观察、分析、抽象、概括等思维能力和应用意识。

4.通过小组讨论、合作学习等方式,经历概念的形成过程,培养学生自主探索知识和合作交流能力。

教学重点和难点:

重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。

难点:单项式概念的建立。

教学方法:

分层次教学,讲授、练习相结合。

教学过程:

一、复习引入:

1、 列代数式

(1)若正方形的边长为a,则正方形的面积是 ( )

(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为( )

(3)若x表示正方形棱长,则正方形的体积是( )

(4)若m表示一个有理数,则它的相反数是( )

(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 ( ) 元。

(数学教学要紧密联系学生的生活实际,这是新课程标准所赋予的`任务。让学生列代数式不仅复习前面的知识,更是为下面给出单项式埋下伏笔,同时使学生受到较好的思想品德教育。)

2、 请学生说出所列代数式的意义。

3、 请学生观察所列代数式包含哪些运算,有何共同运算特征。

由小组讨论后,经小组推荐人员回答,教师适当点拨。

(充分让学生自己观察、自己发现、自己描述,进行自主学习和合作交流,可极大的激发学生学习的积极性和主动性,满足学生的表现欲和探究欲,使学生学得轻松愉快,充分体现课堂教学的开放性。)

二、讲授新课:

1.单项式:

通过特征的描述,引导学生概括单项式的概念,从而引入课题:单项式,并板书归纳得出的单项式的概念,即由数与字母的乘积组成的代数式称为单项式。然后教师补充,单独一个数或一个字母也是单项式,如a,5。

2.练习:判断下列各代数式哪些是单项式?

(1)abc; (2)b2; (3)-5ab2; (4)y; (5)-xy2; (6)-5。

(加强学生对不同形式的单项式的直观认识,同时利用练习中的单项式转入单项式的系数和次数的教学)

3.单项式系数和次数:

直接引导学生进一步观察单项式结构,总结出单项式是由数字因数和字母因数两部分组成的。以四个单项式a2h,2r,abc,-m为例,让学生说出它们的数字因数是什么,从而引入单项式系数的概念并板书,接着让学生说出以上几个单项式的字母因数是什么,各字母指数分别是多少,从而引入单项式次数的概念并板书。

概念:

单项式的系数:单项式中的数字因数。

单项式的次数:在单项式中,所有字母的指数之和。

4.例题:

例1:判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数和次数。

①x+1; ② ; ③ ④-ab。

答:①不是,因为原代数式中出现了加法运算;

②不是,因为原代数式是1与x的商;

③是,它的系数是,次数是2;

④是,它的系数是-1,次数是3。

例2:下面各题的判断是否正确?

①-7xy2的系数是7;

②-x2y3与x3没有系数;

③-ab3c2的次数是0+3+2;

④-a3的系数是-1;

⑤-32x2y3的次数是7;

⑥r2h的系数是。

通过其中的反例练习及例题,强调应注意以下几点:

①圆周率是常数;

②当一个单项式的系数是1或-1时,1通常省略不写,如x2,-a2b等;

③单项式次数只与字母指数有关。

5.游戏:

规则:一个小组学生说出一个单项式,然后指定另一个小组的学生回答他的系数和次数;然后交换,看两小组哪一组回答得快而准。

(学生自行编题是一种创造性的思维活动,它可以改变一味由教师出题的形式,且由编题学生指定某位同学回答,可使课堂气氛活跃,学生思维活跃,使学生能够透彻理解知识,同时培养同学之间的竞争意识。)

6.课堂练习:课本p56:1,2。

三、课堂小结:

①单项式及单项式的系数、次数。

②根据教学过程反馈的信息对出现的问题有针对性地进行小结。

③通过判断一个单项式的系数、次数,培养学生理解运用新知识的能力,已达到本节课的教学目的。

四、作业布置:

《整式》教案【第七篇】

教学目标

①经历探索整式除法运算法则的过程,会进行简单的整式除法运算(只要求单项式除以单项式,并且结果都是整式),培养学生独立思考、集体协作的能力。

②理解整式除法的算理,发展有条理的思考及表达能力。

教学重点与难点

重点:整式除法的运算法则及其运用。

难点:整式除法的运算法则的推导和理解,尤其是单项式除以单项式的运算法则。

教学准备

卡片及多媒体课件。

教学设计

情境引入

教科书第161页问题:木星的质量约为×1024吨,地球的。质量约为×1021吨,你知道木星的质量约为地球质量的多少倍吗?

重点研究算式(×1024)÷(×1021)怎样进行计算,目的是给出下面两个单项式相除的模型。

注:教科书从实际问题引入单项式的除法运算,学生在探索这个问题的过程中,将自然地体会到学习单项式的除法运算的必要性,了解数学与现实世界的联系,同时再次经历感受较大数据的过程。

探究新知

(1)计算(×1024)÷(×1021),说说你计算的根据是什么?

(2)你能利用(1)中的方法计算下列各式吗?

8a3÷2a; 6x3y÷3xy; 12a3b2x3÷3ab2。

(3)你能根据(2)说说单项式除以单项式的运算法则吗?

注:教师可以鼓励学生自己发现系数、同底数幂的底数和指数发生的变化,并运用自己的语言进行描述。

单项式的除法法则的推导,应按从具体到一般的步骤进行。探究活动的安排,是使学生通过对具体的特例的计算,归纳出单项式的除法运算性质,并能运用乘除互逆的关系加以说明,也可类比分数的约分进行。在这些活动过程中,学生的化归、符号演算等代数推理能力和有条理的表达能力得到进一步发展。重视算理算法的渗透是新课标所强调的。

归纳法则

单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。

注:通过总结法则,培养学生的概括能力,养成用数学语言表达自己想法的数学学习习惯。

应用新知

例2 计算:

(1)28x4y2÷7x3y;

(2)-5a5b3c÷15a4b。

首先指明28x4y2与7x3y分别是被除式与除式,在这儿省去了括号。对本例可以采用学生口述,教师板书的形式完成。口述和板书都应注意展示法则的应用,计算过程要详尽,使学生尽快熟悉法则。

注:单项式除以单项式,既要对系数进行运算,又要对相同字母进行指数运算,同时对只在一个单项式里含有的幂要加以注意,这些对刚刚接触整式除法的学生来讲,难免会出现照看不全的情况,所以更应督促学生细心解答问题。

巩固新知 教科书第162页练习1及练习2。

学生自己尝试完成计算题,同桌交流。

注:在独立解题和同伴的相互交流过程中让学生自己去体会法则、掌握法则,印象更为深刻,也有助于培养学生良好的思维习惯和主动参与学习的习惯。

作业

1、必做题:教科书第164页习题第1题;第2题。

2、选做题:教科书第164页习题第8题

初中七年级上册数学《整式》教案优质【第八篇】

知识目标:

(1)使学生在掌握合并同类项的基础上,掌握去括号法则。

(2)正确地进行简单的整式加减运算。

能力目标:培养学生基本的运算技巧和能力。

情感目标:使学生逐渐形成事物变化、相互联系和相互转化的观点,并在学习中培养学生良好的学习习惯、独立思考、勇于探索的精神。

教学重点、难点:

重点 去括号法则。 教学

难点 正确运用去括号法则,减少运算中的符号错误。

教学用具: 多媒体

教 学 过 程 :

(一)、情景引入

1、多媒体展示游戏:把我的出生月份数乘2,加10,再把和乘5,加上我家的人口数,结果为133

你出生于8月份,你家有3口人

2、猜数游戏的数学原理常常与代数式的运算有关

3、知识梳理

-2x+3y-4z 共有 项,其中第三项是: 。

1、写出 2a2b 的一个同类项:

2、已知4a2b3与a2mbn-1是同类项,则m= ____,n=_____.

(二)实践应用, 拓展延

如图4-7,要计算这个图形的面积,你有几种不同的方法?请计算结果。

2、用分配律计算:

(1) +(a-b+c)

(2) -(a-b+c)

3、代数式运算的去括号法则:

括号前是+号,把括号和它前面的+号去掉,括号里各项都不变号;括号前是-号,把括号和它前面的-号去掉,括号里各项都改变符号

4、顺口溜

去括号,看符号

是+号,不变号

是-号,全变号

5、辩一辩:指出下列各式是否正确?如果错误,请指出原因。

(1) a-(b-c+d) = a-b+c+d

(2) -(a-b)+(-c+d)= a+b-c-d

(3) a-3(b-2c)=a-3b+2c

(4) x-2(-y-3z+1)=x-2y+6z

6.注意:(1)去括号时应将括号前面的符号连同括号一起去掉。

(2)要注意括号前面是 -号时,去掉括号后, 括号里各项都要改变符号;不能只改变某几项而忘记改变其余的符号

(3)若括号前面是数字因数时,.应乘以括号里的每一项,不要漏乘。

7:练一练

(三)作业

20 3391294
");