数学教案-对数函数(精编3篇)

网友 分享 时间:

【前言导读】此篇优秀教案“数学教案-对数函数(精编3篇)”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

对数函数1

课题:指数函数与对数函数的性质及其应用

课型:综合课

教学目标 :在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

重点:指数函数与对数函数的特性。

难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

教学方法:多媒体授课。

学法指导:借助列表与图像法。

教具:多媒体教学设备。

教学过程 

一、   复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

二、   展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

指数函数与对数函数关系一览表

函数

性质

指数函数

y=ax (a>0且a≠1)

对数函数

y=logax(a>0且a≠1)

定义域

实数集R

正实数集(0,﹢∞)

值域

正实数集(0,﹢∞)

实数集R

共同的点

(0,1)

(1,0)

单调性

a>1 增函数

a>1 增函数

0<a<1 减函数

0<a<1 减函数

函数特性

a>1

当x>0,y>1

当x>1,y>0

当x<0,0<y<1

当0<x<1, y<0

0<a<1

当x>0, 0<y<1

当x>1, y<0

当x<0,y>1

当0<x<1, y>0

反函数

y=logax(a>0且a≠1)

y=ax (a>0且a≠1)

图像

Y

y=(1/2)x      y=2x

(0,1)

X

Y

y=log2x

(1,0)

X

y=log1/2x

三、   同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

Y

y=(1/2)x                           y=2x           y=x

(0,1)              y=log2x

(1,0)            X

y=log1/2x

注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

四、   利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

五、   例题

例⒈比较(Л)(-)与(Л)(-)的大小。

解:∵ y=ax中, a=Л>1

∴ 此函数为增函数

又∵ ﹣>﹣

∴ (Л)(-)>(Л)(-)

例⒉比较log67与log76的大小。

解: ∵ log67>log66=1

log76<log77=1

∴  log67>log76

注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

例⒊ 求y=3√4-x2的定义域和值域。

解:∵√4-x2  有意义,须使4-x2≥0

即x2≤4,      |x|≤2

∴-2≤x≤2,即定义域为[-2,2]

又∵0≤x2≤4,   ∴0≤4-x2≤4

∴0≤√4-x2  ≤2,且y=3x是增函数

∴30≤y≤32,即值域为[1,9]

例⒋ 求函数y=√()的定义域。

解:要函数有意义,须使()≥0

又∵ 0<<1,∴y=是减函数

∴ 0<≤1

∴ <≤

∴ ≤x<1,即定义域为[,1)

六、   课堂练习

求下列函数的定义域

1.      y=8[1/(2x-1)]

2.      y=loga(1-x)2 (a>0,且a≠1)

七、   评讲练习

八、   布置作业

第113页,第10、11题。并预习指数函数与对数函数

在物理、社会科学中的实际应用。

对数函数2

教案

课题:指数函数与对数函数的性质及其应用

课型:综合课

教学目标 :在复习指数函数与对数函数的特性之后,通过图像对比使学生较快的学会不求值比较指数函数与对数函数值的大小及提高对复合型函数的定义域与值域的解题技巧。

重点:指数函数与对数函数的特性。

难点:指导学生如何根据上述特性解决复合型函数的定义域与值域的问题。

教学方法:多媒体授课。

学法指导:借助列表与图像法。

教具:多媒体教学设备。

教学过程 

一、   复习提问。通过找学生分别叙述指数函数与对数函数的公式及特性,加深学生的记忆。

二、   展示指数函数与对数函数的一览表。并和学生们共同复习这些性质。

指数函数与对数函数关系一览表

函数

性质

指数函数

y=ax (a>0且a≠1)

对数函数

y=logax(a>0且a≠1)

定义域

实数集R

正实数集(0,﹢∞)

值域

正实数集(0,﹢∞)

实数集R

共同的点

(0,1)

(1,0)

单调性

a>1 增函数

a>1 增函数

0<a<1 减函数

0<a<1 减函数

函数特性

a>1

当x>0,y>1

当x>1,y>0

当x<0,0<y<1

当0<x<1, y<0

0<a<1

当x>0, 0<y<1

当x>1, y<0

当x<0,y>1

当0<x<1, y>0

反函数

y=logax(a>0且a≠1)

y=ax (a>0且a≠1)

图像

Y

y=(1/2)x      y=2x

(0,1)

X

Y

y=log2x

(1,0)

X

y=log1/2x

三、   同一坐标系中将指数函数与对数函数进行合成, 观察其特点,并得出y=log2x与y=2x、 y=log1/2x与y=(1/2)x 的图像关于直线y=x对称,互为反函数关系。所以y=logax与y=ax互为反函数关系,且y=logax的定义域与y=ax的值域相同,y=logax的值域与y=ax的定义域相同。

Y

y=(1/2)x                           y=2x           y=x

(0,1)              y=log2x

(1,0)            X

y=log1/2x

注意:不能由图像得到y=2x与y=(1/2)x为偶函数关系。因为偶函数是指同一个函数的图像关于Y轴对称。此图虽有y=2x与y=(1/2)x图像对称,但它们是2个不同的函数。

四、   利用指数函数与对数函数性质去解决含有指数与对数的复合型函数的定义域、值域问题及比较函数的大小值。

五、   例题

例⒈比较(Л)(-)与(Л)(-)的大小。

解:∵ y=ax中, a=Л>1

∴ 此函数为增函数

又∵ ﹣>﹣

∴ (Л)(-)>(Л)(-)

例⒉比较log67与log76的大小。

解: ∵ log67>log66=1

log76<log77=1

∴  log67>log76

注意:当2个对数值不能直接进行比较时,可在这2个对数中间插入一个已知数,间接比较这2个数的大小。

例⒊ 求y=3√4-x2的定义域和值域。

解:∵√4-x2  有意义,须使4-x2≥0

即x2≤4,      |x|≤2

∴-2≤x≤2,即定义域为[-2,2]

又∵0≤x2≤4,   ∴0≤4-x2≤4

∴0≤√4-x2  ≤2,且y=3x是增函数

∴30≤y≤32,即值域为[1,9]

例⒋ 求函数y=√()的定义域。

解:要函数有意义,须使()≥0

又∵ 0<<1,∴y=是减函数

∴ 0<≤1

∴ <≤

∴ ≤x<1,即定义域为[,1)

六、   课堂练习

求下列函数的定义域

1.      y=8[1/(2x-1)]

2.      y=loga(1-x)2 (a>0,且a≠1)

七、   评讲练习

八、   布置作业

第113页,第10、11题。并预习指数函数与对数函数

在物理、社会科学中的实际应用。

对数函数3

对数函数

对数函数的一般形式为,它实际上就是指数函数的反函数。因此指数函数里对于a的规定,同样适用于对数函数。

右图给出对于不同大小a所表示的函数图形:

可以看到对数函数的图形只不过的指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数。

(1)对数函数的定义域为大于0的实数集合。

(2)对数函数的值域为全部实数集合。

(3)函数总是通过(1,0)这点。

(4)a大于1时,为单调递增函数,并且上凸;a小于1大于0时,函数为单调递减函数,并且下凹。

(5)显然对数函数无界。

反比例函数

形如y=k/x(k为常数且k≠0)的函数,叫做反比例函数。

自变量x的取值范围是不等于0的一切实数。

反比例函数图像性质:

反比例函数的图像为双曲线。

由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。

另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为∣k∣。

如图,上面给出了k分别为正和负(2和-2)时的函数图像。

当k>0时,反比例函数图像经过一,三象限,是减函数

当k<0时,反比例函数图像经过二,四象限,是增函数

反比例函数图像只能无限趋向于坐标轴,无法和坐标轴相交。

知识点:

1.过反比例函数图象上任意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。

2.对于双曲线y=k/x,若在分母上加减任意一个实数(即y=k/(x±m)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移)

18 1230805
");