高中数学等差数列教案精彩4篇

网友 分享 时间:

【序言】由三一刀客最美丽的网友为您整理分享的“高中数学等差数列教案精彩4篇”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

高中等差数列的教学设计【第一篇】

教学目标

1.知识与技能

(1)理解等差数列的定义,会应用定义判断一个数列是否是等差数列:

(2)账务等差数列的通项公式及其推导过程:

(3)会应用等差数列通项公式解决简单问题。

2、过程与方法

在定义的理解和通项公式的推导、应用过程中,培养学生的观察、分析、归纳能力和严密的逻辑思维的能力,体验从特殊到一般,一般到特殊的认知规律,提高熟悉猜想和归纳的能力,渗透函数与方程的思想。

3、情感、态度与价值观

通过教师指导下学生的自主学习、相互交流和探索活动,培养学生主动探索、用于发现的求知精神,激发学生的学习兴趣,让学生感受到成功的喜悦。在解决问题的过程中,使学生养成细心观察、认真分析、善于总结的良好习惯。

教学重点

①等差数列的概念;

②等差数列的通项公式

教学难点

①理解等差数列“等差”的特点及通项公式的含义;

②等差数列的通项公式的推导过程.

学情分析

我所教学的学生是我校高一(7)班的学生(平行班学生),经过一年的高中数学学习,大部分学生知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了较强的抽象思维能力和演绎推理能力,但也有一部分学生的基础较弱,学习数学的兴趣还不是很浓,所以我在授课时注重从具体的生活实例出发,注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展.

设计思路

1.教法

①启发引导法:这种方法有利于学生对知识进行主动建构;有利于突出重点,突破难点;有利于调动学生的主动性和积极性,发挥其创造性。

②分组讨论法:有利于学生进行交流,及时发现问题,解决问题,调动学生的积极性。

③讲练结合法:可以及时巩固所学内容,抓住重点,突破难点。

2.学法

引导学生首先从三个现实问题(数数问题、水库水位问题、储蓄问题)概括出数组特点并抽象出等差数列的概念;接着就等差数列概念的特点,推导出等差数列的通项公式;可以对各种能力的同学引导认识多元的推导思维方法。

教学过程

一:创设情境,引入新课

1.从0开始,将5的倍数按从小到大的顺序排列,得到的数列是什么?

2.水库管理人员为了保证优质鱼类有良好的生活环境,用定期放水清库的办法清理水库中的杂鱼.如果一个水库的水位为18m,自然放水每天水位降低2.5m,最低降至5m.那么从开始放水算起,到可以进行清理工作的那天,水库每天的水位(单位:m)组成一个什么数列?

3.我国现行储蓄制度规定银行支付存款利息的方式为单利,即不把利息加入本息计算下一期的利息.按照单利计算本利和的公式是:本利和=本金×(1+利率×存期)。活期存入10 000元钱,年利率是0.72%,那么按照单利,5年内各年末的本利和(单位:元)组成一个什么数列?

教师:以上三个问题中的数蕴涵着三列数.

学生:

1:0,5,10,15,20,25,….

2:18,15.5,13,10.5,8,5.5.

3:10072,10144,10216,10288,10360.

(设置意图:从实例引入,实质是给出了等差数列的现实背景,目的是让学生感受到等差数列是现实生活中大量存在的数学模型。通过分析,由特殊到一般,激发学生学习探究知识的自主性,培养学生的归纳能力。

二:观察归纳,形成定义

①0,5,10,15,20,25,….

②18,15.5,13,10.5,8,5.5.

③10072,10144,10216,10288,10360.

思考1上述数列有什么共同特点?

思考2根据上数列的共同特点,你能给出等差数列的一般定义吗?

思考3你能将上述的文字语言转换成数学符号语言吗?

教师:引导学生思考这三列数具有的共同特征,然后让学生抓住数列的特征,归纳得出等差数列概念。

学生:分组讨论,可能会有不同的答案:前数和后数的差符合一定规律;这些数都是按照一定顺序排列的…只要合理教师就要给予肯定。

教师引导归纳出:等差数列的定义;另外,教师引导学生从数学符号角度理解等差数列的定义。

(设计意图:通过对一定数量感性材料的观察、分析,提炼出感性材料的本质属性;使学生体会到等差数列的规律和共同特点;一开始抓住:“从第二项起,每一项与它的前一项的差为同一常数”,落实对等差数列概念的准确表达。)

三:举一反三,巩固定义

1、判定下列数列是否为等差数列?若是,指出公差d。

(1)1,1,1,1,1;

(2)1,0,1,0,1;

(3)2,1,0,-1,-2;

(4)4,7,10,13,16.

教师出示题目,学生思考回答.教师订正并强调求公差应注意的问题。

注意:公差d是每一项(第2项起)与它的前一项的差,防止把被减数与减数弄颠倒,而且公差可以是正数,负数,也可以为0 。

(设计意图:强化学生对等差数列“等差”特征的理解和应用)。

2思考4:设数列{an}的通项公式为an=3n+1,该数列是等差数列吗?为什么?

(设计意图:强化等差数列的证明定义法)

四:利用定义,导出通项

1、已知等差数列:8,5,2,…,求第200项?

2、已知一个等差数列{an}的首项是a1,公差是d,如何求出它的任意项an呢?

教师出示问题,放手让学生探究,然后选择列式具有代表性的上去板演或投影展示。根据学生在课堂上的具体情况进行具体评价、引导,总结推导方法,体会归纳思想以及累加求通项的方法;让学生初步尝试处理数列问题的常用方法。

(设计意图:引导学生观察、归纳、猜想,培养学生合理的推理能力。学生在分组合作探究过程中,可能会找到多种不同的解决办法,教师要逐一点评,并及时肯定、赞扬学生善于动脑、勇于创新的品质,激发学生的创造意识。鼓励学生自主解答,培养学生运算能力)

五:应用通项,解决问题

1判断100是不是等差数列2, 9,16,…的项?如果是,是第几项?

2在等差数列{an}中,已知a5=10,a12=31,求a1,d和an。

3求等差数列 3,7,11,…的第4项和第10项

教师:给出问题,让学生自己操练,教师巡视学生答题情况。

学生:教师叫学生代表总结此类题型的解题思路,教师补充:已知等差数列的首项和公差就可以求出其通项公式

(设计意图:主要是熟悉公式,使学生从中体会公式与方程之间的联系。初步认识“基本量法”求解等差数列问题。)

六:反馈练习:教材13页练习1

七:归纳总结:

1、一个定义:

等差数列的定义及定义表达式

2、一个公式:

等差数列的通项公式

3、二个应用:

定义和通项公式的应用

教师:让学生思考整理,找几个代表发言,最后教师给出补充

(设计意图:引导学生去联想本节课所涉及到的各个方面,沟通它们之间的联系,使学生能在新的高度上去重新认识和掌握基本概念,并灵活运用基本概念。)

设计反思

本设计从生活中的数列模型导入,有助于发挥学生学习的主动性,增强学生学习数列的兴趣。在探索的过程中,学生通过分析、观察,归纳出等差数列定义,然后由定义导出通项公式,强化了由具体到抽象,由特殊到一般的思维过程,有助于提高学生分析问题和解决问题的能力。本节课教学采用启发方法,以教师提出问题、学生探讨解决问题为途径,以相互补充展开教学,总结科学合理的知识体系,形成师生之间的良性互动,提高课堂教学效率。

高中等差数列的教学设计【第二篇】

教学目的:

1.明确等差数列的定义,掌握等差数列的通项公式。

2.会解决知道中的三个,求另外一个的问题。

教学重点:等差数列的概念,等差数列的通项公式。

教学难点:等差数列的性质

教学过程:

一、复习引入:(课件第一页)

二、讲解新课:

1.等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的 差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。

(课件第二页)

⑴.公差d一定是由后项减前项所得,而不能用前项减后项来求;

⑵.对于数列{ },若 - =d (与n无关的数或字母),n≥2,n∈n ,则此数列是等差数列,d 为公差。

2.等差数列的通项公式: 或 等差数列定义是由一数列相邻两项之间关系而得。若一等差数列 的首项是 ,公差是d,则据其定义可得: 即: 即: 即: …… 由此归纳等差数列的通项公式可得: (课件第二页) 第二通项公式 (课件第二页)

三、例题讲解

例1 ⑴求等差数列8,5,2…的第20项(课本p111) ⑵ -401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

例2 在等差数列 中,已知 , ,求 , ,

例3将一个等差数列的通项公式输入计算器数列 中,设数列的第s项和第t项分别为 和 ,计算 的值,你能发现什么结论?并证明你的结论。

小结:

①这就是第二通项公式的变形,

②几何特征,直线的斜率

例4 梯子最高一级宽33cm,最低一级宽为110cm,中间还有10级,各级的宽度成等差数列,计算中间各级的宽度。(课本p112例3)

例5 已知数列{ }的通项公式 ,其中 、 是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?(课本p113例4)

分析:由等差数列的定义,要判定 是不是等差数列,只要看 (n≥2)是不是一个与n无关的常数。

注:

①若p=0,则{ }是公差为0的等差数列,即为常数列q,q,q,…

②若p≠0, 则{ }是关于n的一次式,从图象上看,表示数列的各点均在一次函数y=px+q的图象上,一次项的系数是公差,直线在y轴上的截距为q.

③数列{ }为等差数列的充要条件是其通项 =pn+q (p、q是常数)。称其为第3通项公式

④判断数列是否是等差数列的方法是否满足3个通项公式中的一个。

例6.成等差数列的四个数的和为26,第二项与第三项之积为40,求这四个数。

四、练习:

1、(1)求等差数列3,7,11,……的第4项与第10项。

(2)求等差数列10,8,6,……的第20项。

(3)100是不是等差数列2,9,16,……的项?如果是,是第几项?如果不是,说明理由。

(4)-20是不是等差数列0,-3 ,-7,……的项?如果是,是第几项?如果不是,说明理由。

2、在等差数列{ }中,

(1)已知 =10, =19,求 与d;

五、课后作业:

习题 1(2),(4) 2.(2), 3, 4, 5, 6 。 8. 9.

数学等差数列教案【第三篇】

教学目标:

1、知识与技能目标:理解等差数列的概念,了解等差数列的通项公式的推导过程及思想,掌握并会用等差数列的通项公式,初步引入“数学建模”的思想方法并能运用。

2、过程与方法目标:培养学生观察分析、猜想归纳、应用公式的能力;在领会函数与数列关系的前提下,渗透函数、方程的思想。

3、情感态度与价值观目标:通过对等差数列的研究培养学生主动探索、勇于发现的求知的精神;养成细心观察、认真分析、善于总结的良好思维习惯。

教学重点:

等差数列的概念及通项公式。

教学难点:

(1)理解等差数列“等差”的特点及通项公式的含义。

(2)等差数列的通项公式的推导过程及应用。

教具:多媒体、实物投影仪

教学过程:

一、复习引入:

1、回忆上一节课学习数列的定义,请举出一个具体的例子。表示数列有哪几种方法——列举法、通项公式、递推公式。我们这节课接着学习一类特殊的数列——等差数列。

2、由生活中具体的数列实例引入

(1)。国际奥运会早期,撑杆跳高的记录近似的由下表给出:

你能看出这4次撑杆条跳世界记录组成的数列,它的各项之间有什么关系吗?

(2)某剧场前10排的座位数分别是:

48、46、44、42、40、38、36、34、32、30

引导学生观察:数列①、②有何规律?

引导学生发现这些数字相邻两个数字的差总是一个常数,数列①先左到右相差,数列②从左到右相差-2。

二。新课探究,推导公式

1.等差数列的概念

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列,这个常数叫做等差数列的公差,通常用字母d来表示。

强调以下几点:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

所以上面的2、3都是等差数列,他们的公差分别为,-2。

在学生对等差数列有了直观认识的基础上,我将给出练习题,以巩固知识的学习。

[练习一]判断下列各组数列中哪些是等差数列,哪些不是?如果是,写出首项a1和公差d,如果不是,说明理由。

,5,7,…… √ d=2

,6,3,0,-3,…… √ d=-3

3、 0,0,0,0,0,0,……。; √ d=0

4、 1,2,3,2,3,4,……;×

5、 1,0,1,0,1,……×

在这个过程中我将采用边引导边提问的方法,以充分调动学生学习的积极性。

2.等差数列通项公式

如果等差数列{an}首项是a1,公差是d,那么根据等差数列的定义可得:

a2 - a1 =d即:a2 =a1 +d

a3 – a2 =d即:a3 =a2 +d = a1 +2d

a4 – a3 =d即:a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

进而归纳出等差数列的通项公式:an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

n=a1+(n-1)d

a2-a1=d

a3-a2=d

a4-a3 =d

……

an –a(n-1) =d

将这(n-1)个等式左右两边分别相加,就可以得到

an-a1=(n-1)d

即an=a1+(n-1)d (Ⅰ)

当n=1时,(Ⅰ)也成立,所以对一切n∈N﹡,上面的公式(Ⅰ)都成立,因此它就是等差数列{an}的通项公式。

三。应用举例

例1求等差数列,12,8,4,0,…的第10项;20项;第30项;

例2 -401是不是等差数列-5,-9,-13,…的项?如果是,是第几项?

四。反馈练习

练习A组第1题和第2题(要求学生在规定时间内做完上述题目,教师提问)。目的:使学生熟悉通项公式对学生进行基本技能训练。

五。归纳小结提炼精华

(由学生总结这节课的收获)

1、等差数列的概念及数学表达式。

强调关键字:从第二项开始它的每一项与前一项之差都等于同一常数

2、等差数列的通项公式an= a1+(n-1) d会知三求一

六。课后作业运用巩固

必做题:课本P284习题A组第3,4,5题

高中等差数列的教学设计【第四篇】

一、知识与技能

1、了解公差的概念,明确一个数列是等差数列的限定条件,能根据定义判断一个数列是等差数列;

2、正确认识使用等差数列的各种表示法,能灵活运用通项公式求等差数列的首项、公差、项数、指定的项。

二、过程与方法

1、通过对等差数列通项公式的推导培养学生:的观察力及归纳推理能力;

2、通过等差数列变形公式的教学培养学生:思维的深刻性和灵活性。

三、情感态度与价值观

通过等差数列概念的归纳概括,培养学生:的观察、分析资料的能力,积极思维,追求新知的创新意识。

教学过程

导入新课

师:上两节课我们学习了数列的定义以及给出数列和表示数列的几种方法——列举法、通项公式、递推公式、图象法。这些方法从不同的角度反映数列的特点。下面我们看这样一些数列的例子:(课本P41页的4个例子)

(1)0,5,10,15,20,25,…;

(2)48,53,58,63,…;

(3)18,,13,,8,…;

(4)10 072,10 144,10 216,10 288,10 366,…。

请你们来写出上述四个数列的第7项。

生:第一个数列的第7项为30,第二个数列的第7项为78,第三个数列的第7项为3,第四个数列的第7项为10 510。

师:我来问一下,你依据什么写出了这四个数列的第7项呢?以第二个数列为例来说一说。

生:这是由第二个数列的后一项总比前一项多5,依据这个规律性我得到了这个数列的第7项为78。

师:说得很有道理!我再请同学们仔细观察一下,看看以上四个数列有什么共同特征?我说的是共同特征。

生:1每相邻两项的差相等,都等于同一个常数。

师:作差是否有顺序,谁与谁相减?

生:1作差的顺序是后项减前项,不能颠倒。

师:以上四个数列的共同特征:从第二项起,每一项与它前面一项的差等于同一个常数(即等差);我们给具有这种特征的数列起一个名字叫——等差数列。

这就是我们这节课要研究的内容。

推进新课

等差数列的定义:一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数就叫做等差数列的公差(常用字母“d”表示)。

(1)公差d一定是由后项减前项所得,而不能用前项减后项来求;

(2)对于数列{an},若an-a n-1=d(与n无关的数或字母),n≥2,n∈N*,则此数列是等差数列,d叫做公差。

师:定义中的关键字是什么?(学生:在学习中经常遇到一些概念,能否抓住定义中的关键字,是能否正确地、深入的理解和掌握概念的重要条件,更是学好数学及其他学科的重要一环。因此教师:应该教会学生:如何深入理解一个概念,以培养学生:分析问题、认识问题的能力)

生:从“第二项起”和“同一个常数”。

师::很好!

师:请同学们思考:数列(1)、(2)、(3)、(4)的通项公式存在吗?如果存在,分别是什么?

生:数列(1)通项公式为5n-5,数列(2)通项公式为5n+43,数列(3)通项公式为,…。

师:好,这位同学用上节课学到的知识求出了这几个数列的通项公式,实质上这几个通项公式有共同的特点,无论是在求解方法上,还是在所求的结果方面都存在许多共性,下面我们来共同思考。

[合作探究]

等差数列的通项公式

师:等差数列定义是由一数列相邻两项之间关系而得到的,若一个等差数列{an}的首项是a1,公差是d,则据其定义可得什么?

生:a2-a1=d,即a2=a1+d.

师:对,继续说下去!

生:a3-a2=d,即a3=a2+d=a1+2d;

a4-a3=d,即a4=a3+d=a1+3d;

……

师:好!规律性的东西让你找出来了,你能由此归纳出等差数列的。通项公式吗?

生:由上述各式可以归纳出等差数列的通项公式是an=a1+(n-1)d.

师:很好!这样说来,若已知一数列为等差数列,则只要知其首项a1和公差d,便可求得其通项an了。需要说明的是:此公式只是等差数列通项公式的猜想,你能证明它吗?

生:前面已学过一种方法叫迭加法,我认为可以用。证明过程是这样的:

因为a2-a1=d,a3-a2=d,a4-a3=d,…,an-an-1=d.将它们相加便可以得到:an=a1+(n-1)d.

师:太好了!真是活学活用啊!这样一来我们通过证明就可以放心使用这个通项公式了。

[教师:精讲]

由上述关系还可得:am=a1+(m-1)d,

即a1=am-(m-1)d.

则an=a1+(n-1)d=am-(m-1)d+(n-1)d=am+(n-m)d,

即等差数列的第二通项公式an=am+(n-m)d.(这是变通的通项公式)

由此我们还可以得到。

[例题剖析]

例1(1)求等差数列8,5,2,…的第20项;

(2)-401是不是等差数列-5,-9,-13…的项?如果是,是第几项?

师:这个等差数列的首项和公差分别是什么?你能求出它的第20项吗?

生:1这题太简单了!首项和公差分别是a1=8,d=5-8=2-5=-3.又因为n=20,所以由等差数列的通项公式,得a20=8+(20-1)×(-3)=-49.

师:好!下面我们来看看第(2)小题怎么做。

生:2由a1=-5,d=-9-(-5)=-4得数列通项公式为an=-5-4(n-1)。

由题意可知,本题是要回答是否存在正整数n,使得-401=-5-4(n-1)成立,解之,得n=100,即-401是这个数列的第100项。

师:刚才两个同学将问题解决得很好,我们做本例的目的是为了熟悉公式,实质上通项公式就是an,a1,d,n组成的方程(独立的量有三个)。

说明:(1)强调当数列{an}的项数n已知时,下标应是确切的数字;(2)实际上是求一个方程的正整数解的问题。这类问题学生:以前见得较少,可向学生:着重点出本问题的实质:要判断-401是不是数列的项,关键是求出数列的通项公式an,判断是否存在正整数n,使得an=-401成立。

例2已知数列{an}的通项公式an=pn+q,其中p、q是常数,那么这个数列是否一定是等差数列?若是,首项与公差分别是什么?

例题分析:

师:由等差数列的定义,要判定{an}是不是等差数列,只要根据什么?

生:只要看差an-an-1(n≥2)是不是一个与n无关的常数。

师:说得对,请你来求解。

生:当n≥2时,〔取数列{an}中的任意相邻两项an-1与an(n≥2)〕

an-an-1=(pn+1)-[p(n-1)+q]=pn+q-(pn-p+q)=p为常数,

所以我们说{an}是等差数列,首项a1=p+q,公差为p.

师:这里要重点说明的是:

(1)若p=0,则{an}是公差为0的等差数列,即为常数列q,q,q,…。

(2)若p≠0,则an是关于n的一次式,从图象上看,表示数列的各点(n,an)均在一次函数y=px+q的图象上,一次项的系数是公差p,直线在y轴上的截距为q.

(3)数列{an}为等差数列的充要条件是其通项an=pn+q(p、q是常数),称其为第3通项公式。课堂练习

(1)求等差数列3,7,11,…的第4项与第10项。

分析:根据所给数列的前3项求得首项和公差,写出该数列的通项公式,从而求出所┣笙。

解:根据题意可知a1=3,d=7-3=4.∴该数列的通项公式为an=3+(n-1)×4,即an=4n-1(n≥1,n∈N*)。∴a4=4×4-1=15,a 10=4×10-1=39.

评述:关键是求出通项公式。

(2)求等差数列10,8,6,…的第20项。

解:根据题意可知a1=10,d=8-10=-2.

所以该数列的通项公式为an=10+(n-1)×(-2),即an=-2n+12,所以a20=-2×20+12=-28.

评述:要求学生:注意解题步骤的规范性与准确性。

(3)100是不是等差数列2,9,16,…的项?如果是,是第几项?如果不是,请说明理由。

分析:要想判断一个数是否为某一个数列的其中一项,其关键是要看是否存在一个正整数n值,使得an等于这个数。

解:根据题意可得a1=2,d=9-2=7.因而此数列通项公式为an=2+(n-1)×7=7n-5.

令7n-5=100,解得n=15.所以100是这个数列的第15项。

(4)-20是不是等差数列0,,-7,…的项?如果是,是第几项?如果不是,请说明理由。

解:由题意可知a1=0,,因而此数列的通项公式为。

令,解得。因为没有正整数解,所以-20不是这个数列的项。

课堂小结

师:(1)本节课你们学了什么?(2)要注意什么?(3)在生:活中能否运用?(让学生:反思、归纳、总结,这样来培养学生:的概括能力、表达能力)

生:通过本课时的学习,首先要理解和掌握等差数列的定义及数学表达式a n-a n-1=d(n≥2);其次要会推导等差数列的通项公式an=a1+(n-1)d(n≥1)。

221381