高中数学必修四教案精编5篇

网友 分享 时间:

【阅读指引】阿拉题库网友为您分享整理的“高中数学必修四教案精编5篇”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

高中数学必修四教案1

教学目标:

1·进一步理解对数函数的性质,能运用对数函数的相关性质解决对数型函数的常见问题·

2·培养学生数形结合的思想,以及分析推理的能力·

教学重点:

对数函数性质的应用·

教学难点:

对数函数的性质向对数型函数的演变延伸·

教学过程:

一、问题情境

1·复习对数函数的性质·

2·回答下列问题·

(1)函数y=log2x的值域是;

(2)函数y=log2x(x≥1)的值域是;

(3)函数y=log2x(0

3·情境问题·

函数y=log2(x2+2x+2)的定义域和值域分别如何求呢?

二、学生活动

探究完成情境问题·

三、数学运用

例1求函数y=log2(x2+2x+2)的定义域和值域·

练习:

(1)已知函数y=log2x的值域是[—2,3],则x的范围是________________·

(2)函数,x(0,8]的值域是·

(3)函数y=log(x2—6x+17)的值域·

(4)函数的。值域是_______________·

例2判断下列函数的奇偶性:

(1)f(x)=lg(2)f(x)=ln(—x)

例3已知loga 0·75>1,试求实数a取值范围·

例4已知函数y=loga(1—ax)(a>0,a≠1)·

(1)求函数的定义域与值域;

(2)求函数的单调区间·

练习:

1·下列函数(1)y=x—1;(2)y=log2(x—1);(3)y=;(4)y=lnx,其中值域为R的有(请写出所有正确结论的序号)·

2·函数y=lg(—1)的图象关于对称·

3·已知函数(a>0,a≠1)的图象关于原点对称,那么实数m= ·

4·求函数,其中x [,9]的值域·

四、要点归纳与方法小结

(1)借助于对数函数的性质研究对数型函数的定义域与值域;

(2)换元法;

(3)能画出较复杂函数的图象,根据图象研究函数的性质(数形结合)·

五、作业

课本P70~71—4,5,10,11·

高一上册数学必修四教案2

一、教材

《直线与圆的位置关系》是XX的内容,直线和圆的位置关系是本章的重点内容之一。从知识体系上看,它既是点与圆的位置关系的延续与提高,又是学习切线的判定定理、圆与圆的位置关系的基础。从数学思想方法层面上看它运用运动变化的观点揭示了知识的发生过程以及相关知识间的内在联系,渗透了数形结合、分类讨论、类比、化归等数学思想方法,有助于提高学生的思维品质。

二、学情

学生初中已经接触过直线与圆相交、相切、相离的定义和判定;且在上节的学习过程中掌握了点的坐标、直线的方程、圆的方程以及点到直线的距离公式;掌握利用方程组的方法来求直线的交点;具有用坐标法研究点与圆的位置关系的基础;具有一定的数形结合解题思想的基础。

三、教学目标

(一)知识与技能目标

能够准确用图形表示出直线与圆的三种位置关系;可以利用联立方程的方法和求点到直线的距离的方法简单判断出直线与圆的关系。

(二)过程与方法目标

经历操作、观察、探索、总结直线与圆的位置关系的判断方法,从而锻炼观察、比较、概括的逻辑思维能力。

(三)情感态度价值观目标

激发求知欲和学习兴趣,锻炼积极探索、发现新知识、总结规律的能力,解题时养成归纳总结的良好习惯。

四、教学重难点

(一)重点

用解析法研究直线与圆的位置关系。

(二)难点

体会用解析法解决问题的数学思想。

五、教学方法

根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板为平台,通过图形的动态演示,变抽象为直观,为学生的数学探究与数学思维提供支持。在教学中采用小组合作学习的方式,这样可以为不同认知基础的学生提供学习机会,同时有利于发挥各层次学生的作用,教师始终坚持启发式教学原则,设计一系列问题串,以引导学生的数学思维活动。

六、教学过程

(一)导入新课

教师借助多媒体创设泰坦尼克号的情景,并从中抽象出数学模型:已知冰山的分布是一个半径为r的圆形区域,圆心位于轮船正西的l处,问,轮船如何航行能够避免撞到冰山呢?如何行驶便又会撞到冰山呢?

教师引导学生回顾初中已经学习的直线与圆的位置关系,将所想到的航行路线转化成数学简图,即相交、相切、相离。

设计意图:在已有的知识基础上,提出新的问题,有利于保持学生知识结构的连续性,同时开阔视野,激发学生的学习兴趣。

(二)新课教学——探究新知

教师提问如何判断直线与圆的位置关系,学生先独立思考几分钟,然后同桌两人为一组交流,并整理出本组同学所想到的思路。在整个交流讨论中,教师既要有对正确认识的赞赏,又要有对错误见解的分析及对该学生的鼓励。

判断方法:

(1)定义法:看直线与圆公共点个数

即研究方程组解的个数,具体做法是联立两个方程,消去x(或y)后所得一元二次方程,判断△和0的大小关系。

(2)比较法:圆心到直线的距离d与圆的半径r做比较,

(三)合作探究——深化新知

教师进一步抛出疑问,对比两种方法,由学生观察实践发现,两种方法本质相同,但比较法只适合于直线与圆,而定义法适用范围更广。教师展示较为基础的题目,学生解答,总结思路。

已知直线3x+4y-5=0与圆x2+y2=1,判断它们的位置关系?

让学生自主探索,讨论交流,并阐述自己的解题思路。

当已知了直线与圆的方程之后,圆心坐标和半径r易得到,问题的关键是如何得到圆心到直线的距离d,他的本质是点到直线的距离,便可以直接利用点到直线的距离公式求d。类比前面所学利用直线方程求两直线交点的方法,联立直线与圆的方程,组成方程组,通过方程组解得个数确定直线与圆的交点个数,进一步确定他们的位置关系。最后明确解题步骤。

(四)归纳总结——巩固新知

为了将结论由特殊推广到一般引导学生思考:

可由方程组的解的不同情况来判断:

当方程组有两组实数解时,直线l与圆C相交;

当方程组有一组实数解时,直线l与圆C相切;

当方程组没有实数解时,直线l与圆C相离。

活动:我将抽取两位同学在黑板上扮演,并在巡视过程中对部分学生加以指导。最后对黑板上的两名学生的解题过程加以分析完善。通过对基础题的练习,巩固两种判断直线与圆的位置关系判断方法,并使每一个学生获得后续学习的信心。

(五)小结作业

在小结环节,我会以口头提问的方式:

(1)这节课学习的主要内容是什么?

(2)在数学问题的解决过程中运用了哪些数学思想?

设计意图:启发式的课堂小结方式能让学生主动回顾本节课所学的知识点。也促使学生对知识网络进行主动建构。

作业:在学生回顾本堂学习内容明确两种解题思路后,教师让学生对比两种解法,那种更简捷,明确本节课主要用比较d与r的关系来解决这类问题,对用方程组解的个数的判断方法,要求学生课外做进一步的探究,下一节课汇报。

高中数学必修4优秀教案3

一、向量的概念

1、既有又有的量叫做向量。用有向线段≮≯表示向量时,有向线段的长度表示向量的,有向线段的箭头所指的方向表示向量的

2、叫做单位向量

3、的向量叫做平行向量,因为任一组平行向量都可以平移到同一条直线上,所以平行向量也叫做。零向量与任一向量平行

4、且的向量叫做相等向量

5、叫做相反向量

二、向量的表示方法:几何表示法、字母表示法、坐标表示法

三、向量的加减法及其坐标运算

四、实数与向量的乘积

定义:实数 λ 与向量 的积是一个向量,记作λ

五、平面向量基本定理

如果e1、e2是同一个平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2,使a=λ1e1+λ2e2 ,其中e1,e2叫基底

六、向量共线/平行的充要条件

七、非零向量垂直的充要条件

八、线段的定比分点

设是上的 两点,P是上_________的任意一点,则存在实数,使_______________,则为点P分有向线段所成的比,同时,称P为有向线段的定比分点

定比分点坐标公式及向量式

九、平面向量的数量积

(1)设两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫a与b的夹角,其范围是[0,π],|b|cosθ叫b在a上的投影

(2)|a||b|cosθ叫a与b的数量积,记作a·b,即 a·b=|a||b|cosθ

(3)平面向量的数量积的坐标表示

十、平移

典例解读

1、给出下列命题:①若|a|=|b|,则a=b;②若A,B,C,D是不共线的四点,则AB= DC是四边形ABCD为平行四边形的充要条件;③若a=b,b=c,则a=c;④a=b的充要条件是|a|=|b|且a∥b;⑤若a∥b,b∥c,则a∥c

其中,正确命题的序号是______

2、已知a,b方向相同,且|a|=3,|b|=7,则|2a-b|=____

3、若将向量a=(2,1)绕原点按逆时针方向旋转 得到向量b,则向量b的坐标为_____

4、下列算式中不正确的是( )

(A) AB+BC+CA=0 (B) AB-AC=BC

(C) 0·AB=0 (D)λ(μa)=(λμ)a

5、若向量a=(1,1),b=(1,-1),c=(-1,2),则c=( )

、函数y=x2的图象按向量a=(2,1)平移后得到的图象的函数表达式为( )

(A)y=(x-2)2-1 (B)y=(x+2)2-1 (C)y=(x-2)2+1 (D)y=(x+2)2+1

7、平面直角坐标系中,O为坐标原点,已知两点A(3,1),B(-1,3),若点C满足OC=αOA+βOB,其中a、β∈R,且α+β=1,则点C的轨迹方程为( )

(A)3x+2y-11=0 (B)(x-1)2+(y-2)2=5

(C)2x-y=0 (D)x+2y-5=0

8、设P、Q是四边形ABCD对角线AC、BD中点,BC=a,DA=b,则 PQ=_________

9、已知A(5,-1) B(-1,7) C(1,2),求△ABC中∠A平分线长

10、若向量a、b的坐标满足a+b=(-2,-1),a-b=(4,-3),则a·b等于( )

(A)-5 (B)5 (C)7 (D)-1

11、若a、b、c是非零的平面向量,其中任意两个向量都不共线,则( )

(A)(a)2·(b)2=(a·b)2 (B)|a+b|>|a-b|

(C)(a·b)·c-(b·c)·a与b垂直 (D)(a·b)·c-(b·c)·a=0

12、设a=(1,0),b=(1,1),且(a+λb)⊥b,则实数λ的值是( )

(A)2 (B)0 (C)1 (D)-1/2

16、利用向量证明:△ABC中,M为BC的中点,则 AB2+AC2=2(AM2+MB2)

17、在三角形ABC中, =(2,3), =(1,k),且三角形ABC的一个内角为直角,求实数k的值

18、已知△ABC中,A(2,-1),B(3,2),C(-3,-1),BC边上的高为AD,求点D和向量

高中高二数学必修四教案4

教学目标

1、掌握平面向量的数量积及其几何意义;

2、掌握平面向量数量积的重要性质及运算律;

3、了解用平面向量的数量积可以处理有关长度、角度和垂直的问题;

4、掌握向量垂直的条件。

教学重难点

教学重点:平面向量的数量积定义

教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用

教学工具

投影仪

教学过程

一、复习引入:

1、向量共线定理向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ

五,课堂小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

六、课后作业

P107习题组2、7题

课后小结

(1)请学生回顾本节课所学过的知识内容有哪些?所涉及到的主要数学思想方法有那些?

(2)在本节课的学习过程中,还有那些不太明白的地方,请向老师提出。

(3)你在这节课中的表现怎样?你的体会是什么?

课后习题

作业

P107习题组2、7题

高中数学必修4优秀教案5

教学准备

教学目标

一、知识与技能

(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(5)角的集合与实数集 之间建立的一一对应关系。(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。

二、过程与方法

创设情境,引入弧度制度量角的大小,通过探究理解并掌握弧度制的定义,领会定义的合理性。根据弧度制的定义推导并运用弧长公式和扇形面积公式。以具体的实例学习角度制与弧度制的互化,能正确使用计算器。

三、情态与价值

通过本节的学习,使同学们掌握另一种度量角的单位制---弧度制,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系。角的概念推广以后,在弧度制下,角的集合与实数集 之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应,为下一节学习三角函数做好准备。

教学重难点

重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用。

难点: 理解弧度制定义,弧度制的运用。

教学工具

投影仪等

教学过程

一、 创设情境,引入新课

师:有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=公里)

显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制。他们的长度单位是不同的,但是,他们之间可以换算:1英里=公里。

在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制---弧度制。

二、讲解新课

1、角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等。

弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题。

2、弧度制的定义

长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写)。

(师生共同活动)探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与圆交于点。请完成表格。

我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-π,-2π等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定。

角的概念推广以后,在弧度制下,角的集合与实数集R之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应。

四、课堂小结

度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

五、作业布置

作业:习题 A组第7,8,9题。

课后小结

度数与弧度数的换算也可借助“计算器”《中学数学用表》进行;在具体运算时,“弧度”二字和单位符号“rad”可以省略 如:3表示3rad sinp表示prad角的正弦应确立如下的概念:角的概念推广之后,无论用角度制还是弧度制都能在角的集合与实数的集合之间建立一种一一对应的关系。

课后习题

作业:习题 A组第7,8,9题。

板书

18 2235274
");