有余数的除法教学反思 有余数的除法教学反思【汇集4篇】
【导言】此例“有余数的除法教学反思 有余数的除法教学反思【汇集4篇】”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
有余数的除法教学反思【第一篇】
一、克服认识缺陷,获得正确认识
小学数学同其他学科相比具有更高的抽象性和概括性。但由于小学生的整体感知往往是笼统的、不精细的,他们往往不能一下子看出事物的主要方面或特征,以及事物各部分之间的联系,从而产生错误的认识。因此,运用反例进行教学有利于克服小学生这一感知上的缺陷。如,在教学分数的概念时,小学生容易得出以下笼统而粗浅的分数概念:把单位“1”分成若干份,表示这样的一份或几份的数叫分数。他们忽略了至关重要的“平均分”。此时教师可以出示以下反例:把一个长方形分成大小不均的两份(出示图),每份是不是这个长方形的二分之一?让学生辨析并说明理由。通过错例辨析,学生明白了只有“平均分”才会得出分数1/2。又如,学生在学完小数的基本性质后,容易理解成去掉小数点后面的0,小数的大小不变。这时我出示“=”,让学生辨析正误。学生通过讨论,发现去掉小数点后面的0,小数的大小发生了变化。通过辨析,学生理解了“小数末尾”和“小数点后面”的区别,从而真正掌握了小数的基本性质。反例凸显了所学知识中易为学生忽视的本质属性,促进了学生对所学知识的全面深刻理解。
二、克服学生因思维定式影响而产生的负迁移
由于小学生的概括能力、分析能力较低,他们不可能一下子就牢固地掌握基础知识,因此他们在新知识的学习过程中容易产生负迁移。运用反例进行教学是防止、克服这一弱点的好办法。学完分数的乘除和加减混合运算后,有些学生常常产生因简便运算的定式影响而带来运算顺序负迁移。如:① ×÷×=1;② +÷4=。这时,教师可运用这些反例,引导学生分析:第一题中只有乘除法,同一级运算如何计算?第二题中既有加减法又有乘除法,应分别先算什么?再算什么?结果是多少?通过反例教学,使学生进一步弄清了四则混合运算的运算顺序,克服了因负迁移的影响而带来的错误。又如,学生在用“倍数”的知识解决实际问题时,往往一看到“倍”就用乘法来计算。这时我出示这样的反例:小明的父亲今年36岁,是小明年龄的3倍,小明今年多少岁?36×3=108(岁)。答:小明今年108岁。小明今年108岁可能吗?显然答案是错的,因此看到“倍”就用乘法来计算这种固定思路是不行的。通过反例,学生明白了解决实际问题时必须认真分析数量关系,根据乘除法的意义来确定算法。
三、克服学生因为混淆内涵相近的知识而发生的错误
在数学学习中,许多知识是相近或相互联系的,学生易发生混淆。因此,我们可通过反例否定学生的错误认识,澄清相邻概念的区别和联系,从而建立正确的概念。学生学完线段和直线的知识后,容易将两者混淆,往往会把直线当作线段来理解,因为线段和直线都是直的,但线段有两个端点,是有限长的,可以度量,而直线没有端点,是无限长的。这时,我出示下列题目给学生,让其辨析并说明理由:
(1)下面哪些图形是线段?
(2)一条直线长2厘米,对不对?
学生通过分析判断,澄清了原来的似是而非的模糊认识,真正理解了直线和线段的含义。
再如,整除和除尽内涵相仿,它们都是表示除得的结果没有余数,但整除的要求更严格,不仅要求除得的结果是整数,而且要求被除数和除数也必须都是整数,以除得的结果没有余数作为判定整除的条件显然是错误的。为了防止错误的发生,我出示两道错例让学生判断:①因为3÷2=,所以3能被2整除;②因为÷=4,所以能被整除。学生通过错例辨析,得出:整除的条件不单是余数为0,而且要求被除数和除数及商都要是整数;而除尽仅仅要求余数为0,从而正确区分了两者的概念。
四、克服学生在解题中被表面现象干扰而产生的错误
有余数的除法教学反思【第二篇】
教学片段
教师出示“整理与复习”中的第2题。
147÷20= 312÷50= 720÷70=
147÷21= 312÷53= 720÷72=
147÷29= 312÷58= 720÷68=
师:请同学们观察一下这些题目,有什么共同特点?
生:都是三位数除以两位数。
师:你们会算吗?请大家先算一算第一组的三道题。
学生计算后,集体校验每道题的结果。教师统计全班学生的练习情况,剖析练习中的错误,并板书:
①147÷20=7……7
②147÷21=7
③147÷29=5……2
师:第一组题中,你可以帮这三道题分分类吗?
小组同学之间相互讨论、反馈。
生:我想把第①②题归为一类,第③题为另一类。
师:你们知道他这样分类的理由吗?
生:因为第①②题可以直接试商,而第③题需要调商。
师板书:调商。
生:我想把第①③题归为一类,第②题另为一类,因为①③两题都有余数,而第②题没有余数。
师:没有余数的除法怎么验算?有余数的除法呢?请你从中各选一题验算一下。
学生验算后,师生共同总结除法的验算方法。
师:大家观察得真仔细,那么你还有什么发现吗?
生:被除数都是147。
生:除数20、21、29,变得越来越大。
生:被除数相同,除数越小,商越大;反之,被除数相同,除数越大,商越小。
师:第①②题的商都是7呢,你又能发现什么呢?
生:被除数相同,如果商一样,那么余数越大,除数就越小;反之,被除数相同,如果商一样,那么余数越小,除数就越大。
师:回忆一下,刚才你们是怎样计算三位数除以两位数的?
生:笔算三位数除以两位数的除法时,通常把除数看作与它接近的整十数来试商,计算时从被除数的高位除起,除到被除数的哪一位,商就写在哪一位上面,除得的余数必须比除数小。
师:那也就是说两位数可以分成非整十数和整十数两类,我们还要把非整十数转化为整十数来试商,这里还渗透了转化的思想,帮助我们解决了难题。
教师根据学生的小结,顺势板书:非整十数,整十数,转化。
师:根据同学们刚刚所说的方法,请大家完成第二组的三道题目,比一比谁做得既快又准确。
学生计算后,集体校验每道题的结果。教师反馈全班练习的情况,并板书:
④312÷50=6……12
⑤312÷53=5……47
⑥312÷58=5……22
师:这一组题,结果都有余数,那你觉得可以怎么分类呢?
生:把④⑥分成一类,⑤分成另一类,因为④⑥试商以后,不需要调商,而⑤试商以后需要调商。
师追问:这组中的⑤312÷53=5……47与第一组中的③147÷29=5……2都需要调商,那它们在调商的时候有什么不同呢?
学生独立思考。
生:第⑤题是把53看做50,用6试商,发现不够减,说明商太大了,要调小;而第③题是把29看做30,用4试商,发现余数比除数大,说明商太小了,要调大。
师:调商的规律,我们总结成一句话――看小调小,看大调大。
师板书:看小调小,看大调大。
师:至此,我们一起总结了调商的方法,同学们的概括能力、语言表达能力都不错。请同学们完成第三组的三道题目,比一比谁做得既快又准确。
学生计算后,集体校验每道题的结果。教师反馈全班练习的情况,并板书:
⑦720÷70=10……20
⑧720÷72=10
⑨720÷68=10……40
师:你在做这组题的时候,发现与第一组题有什么不同吗?
生:我发现第⑦题除到被除数的个位时,个位上不够商1,要用0占位。第⑨题也是这样。
师:请大家比较一下第一组题和第三组题的商,都是三位数除以两位数,你又发现了什么?
生:三位数除以两位数,商可以是一位数,也可以是两位数。
师:为什么第一组的商是一位数?而第三组的商是两位数呢?
生:先看被除数的前两位,第一组,被除数前两位比除数小,就要看前三位,商写在个位上,所以第一组的商是一位数;而第三组,被除数前两位等于除数或大于除数,所以第三组的商写在十位上,是两位数。
师:总结得太好了。通过这三组题,我们总结出了整数除法的计算法则――先从被除数的高位除起,除数是几位数,就看被除数的前几位;如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要用0占位。我们还学会了三位数除以两位数的调商的方法――看小调小,看大调大。
师板书:商是一位数,商是两位数。
板书:
课后分析
第一,教材为什么要编制这一题组?
笔者认为备课时有必要对教材进行深入解读与分析。这一单元主要目标是让学生经历探索三位数除以两位数算法的过程,会笔算三位数除以两位数。在“整理与复习”中安排这一题组,除了变化形式为学生提供笔算三位数除以两位数的机会外,还有更重要的目的:通过思考,把握题目之间的联系和区别,主动发现计算规律,在更高层次上理解算法、运用算法,发展数学思考能力。从上述教学过程中,看出了执教者如何体现“引导学生在计算过程中积极思考”。
第二,学生的认知Y构是否得到必要完善?
这个题组安排在单元复习中,是否就意味着它仅仅是一道巩固新知的复习题?这一题组的教学是否可以让学生实现认知结构的整合?从教学过程看,执教者的引导相当成功。奥苏贝尔指出:“学生的认知结构是从教材的知识结构转化而来的。”数学学习活动,就是新的学习内容与学生原有认知结构中的内容相互作用,从而实现认知结构的改组或重建的过程。上述教学过程中,执教者做到了,他非常好地利用了这些题组,帮助学生完善原有的认知结构,一步步引导,最后总结出了整数除法计算法则以及三位数除以两位数的调商的方法。这就是精彩的复习课,熟悉的地方,也有别样的风景。
有余数的除法教学反思【第三篇】
[关键词]优化;数学;教学;成长
数学教学需要通过正确的路径引导学生把握数学学科的本质,理解数学基本概念,把握数学思想方法,感悟数学思维方式,感受数学美等。在课堂教学中,教师应努力让学生自己动起来,使他们眼耳口脑手都充分发挥作用,优化看做听说想的过程,使观察、探究、表达、思维到位,让课堂成为数学技能成长的基地。
一、优化看的过程,学会观察
观察是一种有目的、有计划、比较持久的知觉,是人们认识事物、获取知识的重要途径,数学学习必须重视数学观察力的培养。在观察中要有明确的目的,按照一定的观察顺序,将思维与想象相结合,由表及里,从整体到部分又由部分回到整体地引导学生观察,从而提高观察的效果。
例如,教学 “积的变化规律”时,可以先投影出示:16×2= 16×20= 16×20O= 16×2000= ,学生口答算式结果后,教师引导:仔细观察上面四个算式,你发现了什么?随后点拨:把第二个算式和第一个算式比较,因数有什么变化?积呢?你还能从哪些算式的比较中得出这个结论?如果把第三个算式和第一个算式比,你又能发现什么?第四个算式与第一个算式比呢?这样从左往右观察,你能发现什么规律?如果从右往左观察呢?最会回顾:积的变化规律是什么?
二、优化做的过程,学会探究
数学是思维的体操,而思维是由动作开始的,在做一做中找到方法,获得体验,加深认识。教学“有余数的除法”时,必须在大量观察中获得直观感知,在反复操作中获取丰富表象和体验。所以,教师要安排三次操作:
第一次是引入阶段。用8根小棒摆正方形,再用8根小棒摆三角形。目的是让学生在操作中知道分物体或摆图形往往有两种结果,一种是刚好分完,一种是分后还有多余,从而引出余数的概念,揭示课题。
第二次是圈点子。15个点子,3个1份,有几份?4个1份,有几份?还多几个?5个1份、6个1份、7个1份呢?操作的目的是让学生进一步认识余数和有余数的除法,弄清商和余数各表示什么。
第三次是操作。教学例题“20个乒乓球,每6个装1盒,可装几盒?还剩几个?”师生讨论后列式:20÷6=3(盒)……2(个)。学生独立操作列式:21个乒乓球可以装几盒?还剩几个?22个、23个、24个呢?这里的主要目的是通过操作,引导学生观察余数与除数的关系,以得出“余数都比除数小”的结论,还要追问:“如果余数与除数一样大,行吗?为什么?余数比除数大呢?你发现了什么规律?”学生在操作、交流、讨论的基础上得出结论:余数一定要比除数小,深刻体会、感悟余数的意义,深刻认识余数与除数的关系。
三、优化听与说的过程,学会表达
教育心理学研究表明:学生课堂上获得的知识和技能,80%以上是靠听与说获得的。在数学课堂教学中,一定要重视学生的听与说,把对学生的听说训练放到应有的位置上,这是小学数学教学本身的需要。
例如,在学习“三角形的高”一课时,学生常会出现这样的错误:画出的高不与它相对的底边垂直,而是与底相对的顶点处的边垂直。为防止这样的情况发生,我先让学生读教材第24页人字梁图下面的话;之后在黑板上画出例题左下标有“顶点、底、高”的三角形图,问学生读懂了什么,谁能到图上指出与顶点相对应的边;再随机指这个三角形中另两个顶点,让学生说,并用彩色粉笔示意其对应关系。之后,我出示四个方位、形状都不一的三角形,顶点处分别标上字母,之后请学生和我一起做游戏,比比谁的反应快,我说表示三角形顶点的字母时,学生用手势示意与这个顶点相对的边的方向;如果我指着三角形的一条边,那学生就抢着回答出与这条边相对的顶点的字母。在这些活动后,我再次强调:三角形的底和高是互相垂直的,它们是一种相互关系。之后,再出示“试一试”的图,利用这些图请学生解释我的意思。我还让学生阅读数学教材,从课本中了解“三角形高”的概念,在学生知道什么是三角形的底和高后,没有用背概念来代替理解概念,而是让多名学生找出与“人字梁”图的顶点相对应的边,要求学生利用直观图反复说其“相互关系、对应关系”。学生通过听,既对知识进行吸收和理解,又对同学发表的意见进行评判和认识;学生通过说,一方面把自己对知识的领悟情况反馈给教师,又为教师随机调整教学提供依据,在不断地听与说中突出重点,突破难点,为之后的学习扫清障碍。
四、优化想的过程,学会思考
有余数的除法教学反思【第四篇】
一、在实践操作中反思
实践操作能激发学生的学习兴趣,变“要我学”为“我要学”。儿童心理学的研究表明,儿童的思维具有直观动作形象性的特点,操作中学生要观察、分析、比较所操作的对象的相同点、不同点,才能进行抽象、概括,从中发展思维。因此在实践操作中教师不但要指导学生观察、分折、比较,还要进行抽象,概括,并且对实践操作的全过程进行反思,从中提高自己的反思能力,发展思维。
比如,一位教师在教学“有余数的除法”时,她先让学生各自拿出10颗糖,每人分2颗,可以分给几个人?每人分3颗,可以分给几个人?每人分4颗,可以分给几个人?每人分5颗,可以分给几个人?每人分6颗,可以分给几个人?在学生分一分的同时,老师又出示了“探究单”
通过观察、比较,学生发现并不是每一次平均分的结果都是正好分完的。这时教师非常自然地引出了有余数的除法。紧接着组织学生根据自己的座位号取出不同数量的糖果,再一次进行平均分,并将自己平均分的情况列出除法算式。这一教学环节中,老师组织学生通过操作实践探讨有余数的除法的特点,在这样的探究过程中学生悟出了为什么“余数总比除数小”的道理。这个过程中,学生自己动手操作,观察比较分析自己悟出的道理,兴趣盎然,思维活跃,不仅有利于有余数除法的知识结构的完整建构,更有利于学生反思能力的提高,充分体现了学生学习的主体性。
二、在思维碰撞中反思
学生与学生之间的互动关系是客观存在的,由于文化背景,生活环境以及知识、经验等方面的差异,对于同一问题,学生的思考纬度、思维水平是不完全一致的。所以,在教学中,教师应注意引导学生尽情交流,只有当自己的思维充分与他人碰撞后,才能达成认识的同化或思维的优化。而如果这种思维的碰撞是在探究之前就激发出来的,那么,不仅可以引起每一位同学的反思,更可以起到“一石激起千层浪”的作用。
比如在教学“统计和平均数”时,我是这样设计导入的:
由上节课的套圈活动导入,出示两张统计图,这两张统计图表示第一组男生和女生套中的个数。(男生:统计了5人的成绩,最多投中9个,最少6个,合计28个;女生:统计了6人的成绩,最多投中10个,最少投中4个,合计30个。)
在学生交流了从统计图中获取的信息后,请学生思考“在这次套圈活动中是男生套得准一些还是女生套得准一些呢?”
孩子们的思考结果很多,大家在争议中互相启发:
生1:我觉得女生套得准,因为套得最多的是女生吴燕10个。
生2:我不同意,我觉得是男生套得准一些,因为套得最少的是女生刘晓娟和沈明芳,都是4个。
生3:我也觉得男生套得准一些,我的理由是:男生套得最少的个数是6个,比女生套得最少的个数4要多两个呢!
生4:不!我觉得女生套得准一些,因为男生一共套了28个,女生一共套了30个。
生5:不对!这样比不公平,因为男生只有4个,而女生有5个。
生6:我认为男生套得准一些的理由是:4个男生就已经套了28个了,而5个女生才套了30个,如果男生再添一个人,就算只套了4个,那男生的总数也比女生多了两个。
很显然,学生根椐套中个数最多的或最少的以及总数来比较都具有一定的不合理性。此刻,我们就迫切需要找一个适当的数来进行比较,即“平均数”。让学生在争论中自己得出“平均数”这个新的知识点,其意义是非常大的。在这一学习过程中,学生的思维始终处于一种高度集中和兴奋的状态中,他们在思辨中不断地反思自己的思考,完善自己的认知。在这个教学过程中,我为学生创设了争辩的机会,慷慨地把时空让给学生,孩子们有了自由思考、反思的时间和空间,争论中,学生学会与他人合作,学会取人之长,学会批判性思维的方法,孩子们碰撞出来的是智慧的火花,更学会了反思自我与反思他人思维的方法。
三、在对比总结中反思
现实中学生解题时,往往仅满足于问题的解决,而对自己的解题方法的优劣却从来不加评价,这是学生思维缺乏灵活性、批判性,反思能力差的表现,也是学生思维创造性不高的表现。因此,教师要通过及时反馈信息,引导学生反思自己或他人的解题策略是否简捷,并努力寻找解决问题的最佳方法,使思维朝着灵活新颖的方向发展。
例如,我在教学“8加几”的时候,对于如何计算8+7,先让学生自己摆一摆小棒,然后来说说是怎样算的。
孩子们的答案都很有创意:
生1:我是用数数的方法:8往后数7个数,9,10,11,12,13,14,15。
生2:我也是用数数的方法,7往后数8个数,8,9,10,11,12,13,14,15。
生3:我是先把8根凑满10根,这样一看就知道15根了。
生4:我是先把7根凑满10根,这样一看也能知道15根。
生5:我知道9+7=16,所以8+7=15。
生6:我知道10+7=17,所以8+7=15。
面对这么多的正确答案,我并没有戛然而止,而是请学生思考:
用哪种方法算起来最简便呢?同桌两个小朋友一起用刚才大家介绍的6种方法说一说、摆一摆、算一算、比一比,找出你们觉得最简便的方法。
学生在操作讨论的基础上,纷纷发表自己的见解。在学生交流之后,我适当鼓励他们的大胆探索,组织学生反思大家共同探究出来的计算方法,在讨论、比较中达成算法的优化。这样学生就及时地反思了自己与他人的学习成果。由于学生刚刚亲身参与了整个教学活动,印象十分清晰,所以反思时也能做到准确而有时效。
四、在自我评价中反思
自我评价是自我意识发展的主要成分和重要标志,是在认识自己的行为和活动的基础上产生的,是通过比较而实现的。让学生对自己进行评价,既是知识的再现,同时又是对自己的能力和方法进行反省。
比如,我在教学米和厘米时,经常有学生出现这样的答案:床长2(厘米);粉笔盒高8(米);铅笔长20(米);旗杆高15(厘米)。这时,我就引导学生用比画或者与实际相比的方法对自己的答案进行自我评价。在自我评价的过程中大多数孩子都能纠正不对的地方。
当然,学生自评后应有反馈,以便教师了解学生的掌握程度,对于新知掌握不好的,运用鼓励性评语激发他积极向上的评价,并在练习中允许他通过努力再次自评,从而增强学生的学习信心,并激励学生走向成功。