《平行四边形的面积》教学反思【最新4篇】
【阅读指引】阿拉题库网友为您分享整理的“《平行四边形的面积》教学反思【最新4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!
平行四边形的面积教学反思【第一篇】
开学初,就被告知新老师要上汇报课,作为一个教书“小白”,顿时觉得有一丝紧张。估摸着应该在期中考试前,于是选了第四单元的内容。后来时间调整,重新选了《平行四边形的面积》这一课。
这节课是在学生已经掌握了长方形面积的计算公式和平行四边形特征的基础上进行学习的,由数格子的方法切入,我根据学生已有的知识水平和认知规律进行教学,现针对教学设计思路和实际课堂教学效果进行自我反思。
1、数学内容来源于生活实际,同样也应当应用于生活。上课伊始,我通过解决两块土地的面积哪块大这个问题,让学生自己想到运用原有的“数格子”的方法解决问题。学生积极主动地投入到数学活动中去。创设了学生熟悉的生活情境,学生也体会到了计算它的面积的用处,激发起学生的求知欲望。
2、动手实践,自主探索与合作交流是学生学习数学的重要方式。在教学中由学生独立数格子,填表格,观察发现,开始探究平行四边形的面积,填写表格,观察表格数据后引出平行四边形面积的猜想。接着是读操作要求,小组合作通过剪一剪、拼一拼等方法,推导出平行四边形的面积公式。来进行公式的验证。给予了学生足够的自主学习、小组讨论的'时间,因此,在汇报时学生能够有条理的说出自己的方法,进行交流,并经历了知识的形成过程。
3、拓展方法,渗透数学思想。在教学时,以学生的验证推导为主,学生在之前大胆猜测的基础上,加上适时引导,学生自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。转化的思想,是数学学习和研究的重要思想方法。启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的思想,充分发挥学生的想象力,培养了创新意识。通过剪一剪,拼一拼,学生探究出了将平行四边形转化成长方形的方法,并通过操作加以演示推导。
4、练习设计的优化是优化教学过程的一个重要方面。本课教学练习题中,第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,让学生判断计算是否正确,从而强调底和高必须对应,学习上更上一个层次。
结合实际效果,自我总结本节课的不足之处有:(1)转化思想渗透不够,平行四边形的面积计算公式是学生动手操作转化为长方形从而推导出来的,这一过程当中,应将“转化”这一数学思想渗透。而在实际教学中,转化思想没有突出,渗透不够。(2)在学生把平行四边形转化成长方形时,没有给学生充裕的时间展示不同的割补方法。后两种方法只是教师讲解、演示给学生看。(3)在学生汇报时,当学生的语言罗嗦时,我有点过急,常把学生的话打断,应允许学生用自己的语言去表达或让学生自己修改语言。(4)时间把握得不好,对知识的巩固运用做的不够,本打算在基本练习之后,让学生探究把长方形框架拉成平行四边形后什么变了,什么没变,以此拓展学生的能力,由于对时间把握不够,在课件中删除了这道题。
经验+反思=成长,是学者波斯纳提出的一个教师成长的公式,它清楚地揭示了反思在教师专业成长中的重要意义。因此,在以后的教学中,还需多反思。
《平行四边形的面积》教学反思【第二篇】
新课标指出“有效的数学活动不能单纯地依赖模仿与记忆,教师要引导学生通过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。”课堂教学中教师始终是学生学习活动的组织者、指导者、合作者,要让学生通过自己的活动去获取知识。在《平行四边形的面积》这一课的教学中,我充分调动学生的学习积极性,让学生动手实践,自主探究,让学生经历了知识的形成过程。反思这节课,我总结了以下几点:
一、注重数学思想方法的渗透
我们在教学中一贯强调,“授人以鱼,不如授人以渔”,在数学教学中,就是要注重数学专业思想方法的渗透。数学专业思想方法即解决数学具体问题时所采用的方式、途径、手段,它是学习数学知识、运用数学知识解决实际问题的具体行为。在数学教学中,要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学能力。在这节课中我先利用求不规则图形的面积向学生渗透转化的思想,从而引出用转化的方法求平行四边形面积的计算方法。在整个探究过程中,“转化”的方法为学生提供了解决问题的途径,学生通过把新知“求平行四边形的面积”转化为旧知“求长方形的面积”,从而达到解决问题的目的。这一方法在数学学习中,具有普遍应用的意义,同时它也是求其他图形面积的重要方法。
二、注重学生自主探索和合作学习
动手实践,自主探索与合作交流是学生学习数学的重要方式。因为学习任何知识的最佳途径是通过自己的实践活动去发现,这样发现理解最深,也最容易掌握。学生学习数学知识是主动建构过程,也就是说,学生学习数学只有通过自身的操作活动和主动参与的去做才能产生效果。现代教育理论主张让学生动手去“做”科学,而不是用耳朵“听”科学。本节课我放手让学生从自己的思维实际出发,让学生在独立思考的基础上进行合作交流,这样既能满足学生展示自我的心理需要,又使学生敢想、敢说、敢做、敢真实地表现自己,让学生的潜能和主体作用得以充分发挥。同时通过师生互动、生生互动,能够使学生从不同的角度去思考问题,能够对自己和他人的观点进行反思与批判,在合作交流中互相启发、互相激励、共同发展。
三、注重了学生数学思维的发展
数学教学的核心是促进学生思维的发展。教学中,教师要千方百计地通过学生学习数学知识,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一起来。课堂教学中充分有效地进行思维训练,是数学教学的核心,它不仅符合素质教育的要求,也符合知识的。形成与发展以及人的认知过程,体现了数学教育的实质性价值。在这节课中,我设计了剪一剪、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?接着,充分运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形转化为长方形的过程,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调平行四边形底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。
四、注重练习的优化设计
练习是课堂教学中的重要环节之一,是巩固知识、运用知识、训练技能技巧的必要手段,是检查教学效果的有效途径。因此,练习设计必须紧扣教学内容和目标,必须注意基础性、针对性、应用性,练习的形式应具有趣味性、层次性、开放性,从而达到有效的练习。本课教学过程中,我注重练习设计,做到学练结合,体现出以下几点:一是抓住重点,练习注意基础性和针对性。第一题告诉学生底和高,直接求平行四边形面积,检验学生是否达到运用公式,解决实际问题。第二题出示含有多余条件的图形题,强调底和高必须对应,让学习上更高一个层次。二是动手操作,练习应注意实践性与应用性。第三题出示把一个长方形的木条框拉住它的两个对角,使它变成一个平行四边形,发现周长和面积有什么变化?三是循序渐进,练习注意层次性。在这个练习的设计中,把练习设计的有层次,由易到难,不能一下子就出现很难的题目,否则把学生难倒了,从而也检测不到本节课的教学效果。四是训练思维,练习注意开放性。设计练习时,有意识地设计一些能开拓学生思路的开放题。第四题比较同底等高的平行四边形的面积,意在提升学生对平行四边形特征的认识和加深对面积计算公式的理解。
总之,本节课为学生创设民主、和谐、宽松、愉悦的学习氛围,使教学过程成为一个不断创设问题情境和探索解决问题的过程,在学生活动的过程中为学生提供充分的活动条件和活动空间,使学生的数学学习成了一个不断感受、体验、探索、交流和应用数学的过程。当然在课堂上也出现了很多不足的地方,但只要我用心去思考,不断反思,相信自己能在不断的自我反思中成长,在不断的自我实践中发展,在不断的自我成长中创新。
《平行四边形的面积》教学反思【第三篇】
本节课资料是在学生已经学会长方形、正方形的面积计算的基础上掌握平行四边形的特征,并认识平行四边形的底和对应的高的基础上教学。我能根据学生已有的知识水平和认知规律进行教学。
心理学家皮亚杰指出:活动是认知的基础,智慧从动作开始。动手操作过程是学生学习的一种循序渐进的探索过程。所以,我主要采用了动手操作,自主探索,合作交流的学习方式,经过课件演示和实践操作,以激发学生的学习兴趣,调动学生的学习进取性。经过学生动手操作、观察、实验得出结论,体现了教学以学生为主体、教师为主导的教学思想。
一、渗透转化思想,引导探究
经过本节课的学习,要能够为推导三角形、梯形面积的计算公式供给方法迁移。转化是数学学习和研究的一种重要思想方法。
我在教学本节课时采用了转化的思想,先经过数方格求面积发现数方格对于大面积的平行四边形来说太麻烦,然后根据观察表格中的数据,引导学生大胆猜想平行四边形的面积可能与谁有关,该怎样计算,之后引出你能将平行四边形转化成已学的什么图形来推导它的面积。学生很自然的想到把平行四边形转化成长方形,再来探究它们之间的关系。这样启发学生设法把所研究的图形转化为已经会计算面积的图形,渗透转化的`思想方法,充分发挥学生的想象力,培养了创新意识。
之后,运用现代化教学手段,为学生架起由具体到抽象的桥梁,使学生清楚的看到平行四边形长方形的转化过程,以及他们之间的关系,突出了重点,化解了难点。
二、重视操作试验,发展本事
本节课教学我充分让学生参与学习,让学习数方格,让学生剪拼,引导学生参与学习全过程,去主动探求知识,强化学生参与意识,我引导学生运用实验割补法把平行四边形转化为长方形,从而找到平行四边形的底与长方形的长的关系,高与宽的关系,根据长方形的面积=长×宽,得到平行四边形面积计算公式是底×高,利用讨论交流等形式要求学生把自我操作转化推导的过程叙述出来,以发展学生思维和表达本事。
这样教学对于培养学生的空间观念,发展解决生活中实际问题的本事都有重要作用。
三、注重优化练习,拓展思维
练习设计的优化是优化教学过程的一个重要方面。本课教学过程中,注重学练结合,既有坡度又注重变式。
第一题告诉学生底和高,直接求平行四边形面积,规范格式,检验学生是否到达运用公式,解决实际问题。
第二题出示包含剩余条件的图形题,强调底和高必须对应,学习上更上一个层次。
第三题考察学生灵活运用公式求平行四边形的底和高。
第四题认识等底等高的平行四边形的面积相等。现不要学生计算,引导学生撕开它们的面积相等吗?并说明理由,让学生明确两个平行四边形共底,根据平行线间的距离处处相等,它们的高也相等。本课练习能促使学生牢固的掌握新知。
《平行四边形的面积》优秀教学反思【第四篇】
本节课内容在学生学习了长方形、正方形、平行四边形、三角形和梯形的特征以及长方形、正方形面积计算的基础上进行教学的,同时又是进一步学习三角形面积、梯形面积等知识的基础。
成功之处:
1、创设问题情境,引发矛盾冲突,激发学生的学习兴趣。在教学中,通过创设“这两个花坛哪一个大呢?”的情境,引发学生的思考,比较这两个花坛的大小,就是比较它们的面积大小,而长方形的面积学生已学过,非常简单就可以得出,但是平行四边形的面积学生没有学过,如何求平行四边形的面积呢?通过这样的疑问,引领学生探索平行四边形的面积计算公式。
2、渗透“转化”思想。转化思想是学生学习数学的非常重要的思维方式,利用转化思想学生可以把新知识转化为已学过的旧知识,利用旧知识解决新问题。在本课教学中,学生首先通过数方格的方法初步发现了长方形和平行四边形这两个图形的面积是相等的,也发现长方形的面积是底乘高,平行四边形的面积是底乘高,但是如何验证这个计算公式呢?学生通过手中的平行四边形会联想到把它转化为长方形,这时教师放手让学生通过剪一剪、拼一拼,自己动手研究推到平行四边形的面积计算公式。这样设计教学过程由浅入深、由易到难、由具体到抽象,学生在探索的过程中逐步体会转化思想在学习中的重要作用。
不足之处:
学生虽然能够推导出平行四边形的面积计算公式,但是仍有个别学生在表述上还存在一些困难。
再教设计:
加强学生的语言表述能力,做到规范、严谨。
上一篇:《草船借箭》教学反思【精编8篇】
下一篇:草船借箭教学反思【参考8篇】