植树问题教学反思精编4篇
【导言】此例“植树问题教学反思精编4篇”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
植树问题教学反思1
本单元通过现实生活中一些常见的实际问题,借助线段图等手段让学生从中发现一些规律,抽取其中的数学模型,然后再用发现的规律來解决生活中的简单实际问题。植树问题通常是指沿着一定的路线植树,这条线段的总长度被树平均分为若干段(间隔),由于路线的不同、植树的要求不同、路线被分成的段数(间隔数)和植树的棵树之间的关系也就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、锯木头、架设电线杆等。这些问题中都隐藏着总数与间隔数之间的关系。
在植树问题中,植树的路线可以是一条线段,也可以是一条首尾相接的封闭曲线如圆形。即使是关于最基本的一条线段上的`植树问题,也可能有不同的情形。如两端都要载,一端栽另一端不栽,两端都不栽。而在封闭曲线上的植树问题可以转化为一条线段上的植树问题中的一端栽另一端不栽的情况。
成功之处:
分类教学,抓住教学重难点,避免出现知识的空档。在教学中,我通过教学例1的两端都栽的情况。这类问题,学生对于求棵树比较容易理解。但是对于在公路的两旁栽树,学生往往容易出错,因此在教学的过程中,多出一些在两旁栽树的情况,让学生能够注意。另外,在这个教学中还注意让学生逆向思考,如:在学校门前小路的两边,每隔5米放一盆菊花(两端都放),从起点到终点一共放了20盆。这条小路长多少米?提醒学生逆向思考问题,也就是要先求一旁小路放多少盆,即20÷2=10(盆),然后再求间隔数,即10-1=9(个),最后求小路的全长,即9×5=45(米)。通过这样的训练,可以使学生不仅知其然,更知其所以然,还能培养学生逆向推理的能力。学生以后再见到难题,可以借助方程顺向思考问题,也可以逆向推理思考。经过这样的训练,学生就不至于感觉数学的困难了。这个单元容易出现的题目就是敲钟问题、锯木头问题、每个角都摆花的问题,这些问题可以一类一类地教学,把每个问题夯实,再进行综合训练,效果会更好。在这些问题中,尤其类似这样的问题要注意教学,如要在三角形花坛的边上种牡丹花,每边种10棵,可以怎样种?最少需要种多少棵牡丹花?这种类型题学生就要有多种考虑,一种是三个角都不种,每边种10棵,需要种10×3=30(棵);第二种是只种1个角,其他两个角不种,就需要种10×3-1=29(棵),第三种是种兩个角的情况,需要10×3-2=28(棵),第四种是种三个角的情况,需要10×3-3=27(棵),通过这样的教学可以避免直接教学课本习题中的棋子问题,学生就可以弄清楚为什么要用每边的数量乘边数候后还要减4。
在教学例1两端都栽的情况,也可以顺势教学其它情况特别是两端都不栽,除了画线段图理解之外,也可以让学生解释为什么要用间隔数减1,实际上中两都栽的情况中间隔数加1再减2,所以得到棵数等于间隔数减1。这样再教学只栽一端时,学生又可以在两端都不栽都情况下间隔数减1加1,就可以得到棵树等于间隔数,由此类推,学生更容易理解这三种情况之间的联系,不至于学一种记忆一种。
不足之处:
学生在学习例题时学得很好,一到接触到不同类型的植树问题就不知所措,还是存在搞不清哪种植树问题的情况。
再教设计:
在教学中,还是继续采取分类教学,既注重对分类教学的讲解,还要注意逆向思维的训练。
植树问题教学反思2
小学生学习数学除了获得基本的知识技能,已解决实际生活及其他学科中的问题以外,最重要的就是感受与领悟数学中所蕴含的基本的丰富的数学思想,重要的数学思维方式,以解决更多的问题。所以设计本节课的教学时,研究到以下:
1.注重数学思想方法的渗透。数学广角担负的一个重要任务就是经过相关知识的学习,感悟重要的数学思想方法,如果说数学教材中的基础知识和基本技能,是一条明显的话,那么蕴含在教材中的数学思想方法就是一条暗线。所以,在教学中注意数学思想方法的渗透,抓住教学资料中的有利因素,有意识地加以引导,使学生在潜移默化中掌握数学思想方法,领悟“化繁为简”和“一一对应”的思考方法。
2.突出线段图的教学和学生动手操作。帮忙学生直观理解植树问题的数学模型,植树问题中最重要的数学思想就是模型思想,而如何让学生理解,从实际问题中抽象出数学模型的过程是教学植树问题的难点,为了突破这一难点,我充分发挥线段图的作用和让学生动手操作植树,来帮忙学生理解植树问题的数学模型。
《植树问题》教学反思3
抽取出其中的数学模型,然后再用发现的规律来解决生活中的一些简单实际问题。解决植树问题的思想方法是实际生活中应用比较广泛的数学思想方法。植树问题通常是指沿着一定的路线植树,这条路线的总长度被树平均分成若干段(间隔),由于路线的不同、植树要求的不同,路线被分成的段数(间隔数)和植树的棵数之间的关系就不同。在现实生活中类似的问题还有很多,比如公路两旁安装路灯、花坛摆花、站队中的方针,等等,它们中都隐藏着总数和间隔数之间的关系问题,通常把这类问题统称为植树问题。
成功之处:
1.利用例1题目,渗透研究植树问题的思想方法:复杂问题——简单问题——发现规律——解决问题。让学生经历探索复杂问题的过程,经历猜想、实验、推理等数学探索的过程,掌握研究问题的`思想方法,渗透“化繁为简”的数学思想方法,尝试从数学的角度运用所学的知识和方法寻找解决问题的策略。教学中启发学生利用在 10米、15米、20米的小路一侧栽树,通过画线段图借助图形让学生体会当两端都栽、两端都不栽、只栽一端,棵数与间隔数之间的关系,从而发现植树问题不同情况的数学模型,进而解决例1的问题,学生也就能快速解决问题了,并且能够做到不仅知其然,还知其所以然。
2.渗透了一一对应的数学思想方法。通过线段图的理解,学生发现了植树问题的不同情况的数学模型。为了更深入理解这一数学模型隐含的数学思想方法,让学生观察线段图,一棵树对应一个间隔,当两端都栽时,发现最后一棵树没有对应的间隔,所以棵数=间隔数+1;当两端都不栽时,发现最后一个间隔没有对应的棵数,所以棵数=间隔数-1;当只栽一端时,发现最后一棵数对应最后一个间隔,所以棵数=间隔数
不足之处:
由于归纳总结了三种类型的植树问题,导致练习只做了一题,学生没有及时的进行巩固,知识夯实不够充分。
再教设计:
控制好教学节奏,增加练习量,夯实巩固所学知识。
植树问题教学反思4
植树一节课包含许多数学思维方法,但这些数学方法的挖掘和处理可以用“不同的人看到不同的人,不同的人看到不同的智慧”来描述。我认为这节课的数学思维方法主要是“化繁为简”,或者从简中寻找规律。这一方法在北京师范大学教材中得到了淋漓尽致的。体现,在人民教育版教材的编排上可谓“隐约可见”。因此,我认为我们利用人民教育版的课堂,应该充分挖掘教材教给学生解决问题的策略。
在课堂教学中,我安排了三个层次的探究活动,从物理操作到绘制线段图再到类比推理,有效地突出了问题解决策略的重要性和多样性。学生们还欣赏到课堂上数学智慧的耀眼光芒,这增强了学生学习数学的兴趣和信心。通过本课程的设计和实践,我更加迫切地感受到数学思想和方法在学生学习和生活中的重要性,因此研究数学思想和方法在课堂上的实施迫在眉睫。这也是当前数学课堂的一个重要不足。作为一名教学研究者,更重要的是向广大教师宣传数学思想和方法的重要性,并提出渗透数学思想、教授学生数学方法的有效措施。
在本课中,为了突出问题解决策略的多样性和完整性,我将原计划在两个学时内完成的材料缩减为一个学时。而在本课程中,我侧重于学生问题解决策略的学习和理解,因此在对本课程知识点的处理上存在一定的不足。
上一篇:学校提高教学质量的措施(5篇)
下一篇:《上学路上》教学反思精编5篇