小数乘法教学反思(最新4篇)
【导言】此例“小数乘法教学反思(最新4篇)”的教学资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
小数乘法教案教学反思【第一篇】
数学课堂中,我们教师在对学生进行学习评价时,结果固然很重要,但学生的思维过程也非常重要。在教给学生学习知识的同时,还应该注意保护学生的自尊心和自信心,鼓励学生去思考、去探索、去创新。让学生说出每道除法算式的实际含义,对学生理解不正确的或不完整的地方,我是根据学生错误所在,通过设问,点拨学生引发讨论,引起学生深入的思考,让学生在不断的争辩中认识除法,学生表达不完整时,我应用反问,使学生对自己的认识产生疑问,引起学生思考,进行比较,从而获得真知即用除法算式可以表示把一些物体按每几个一份进行平均分的过程和结果,也可以表示按指定分成若干份把一些物体平均分的过程和结果。这样既培养了学生良好的思维习惯,又培养了学生各种能力,学生的情感、态度和价值观才能得到有效发展,互动课堂学程导航理念才能得到发展。
从操作中解决实际问题。今天的教学内容是《认识除法》,是在学生对是在学生对是在学生对平均分积累了一定的感性认识的基础上,从平均分的活动中抽象出除法运算,从中体会并初步理解除法的含义。它既是用乘法口诀求商的基础,也是以后解决出发实际问题的基础。让学生了解把一些物体“每几个一份地分”和“平均分成几份”都可以用除法计算。
教学时让学生经历“实际问题——平均分的活动(用圆片分一分)——除法算式”这一抽象过程,让学生结合具体的情境和等分的活动,建立平均分与除法之间的联系,明确除法就是平均分活动的数学概括,体会到什么情况下用除法计算,初步理解除法的含义,并让学生认识除法算式中各部分的名称。
教学伊始,通过创设生活中坐缆车的情境,以自主学习菜单来引导学生从情境中提出问题,并及时引导学生注意教材中提出的问题,思考解决问题的方法,从解决问题的需要引出平均分的活动,再把平均分的活动抽象为除法,建立数学模型,体现新课程的理念。在解决问题的过程中,将小组合作学习与学生的独立思考相结合,充分运用学生已有的知识基础和生活经验,引导学生运用不同的策略解决问题。教师只是发挥了引导者的作用,帮助学生认识除法的意义。
在解决问题的过程中,明白:共有的份数——总数,每份的个数——每份数,平均分成的份数——份数;以及总数、份数、每份数三者之间的关系,如:求总数——乘法(几个几相加),求份数、每份数——除法(平均分的两种分法)。
总之通过本节课的教学,用学具分一分或者画一画,理解除法的意义。同时学生能根据实际问题知道题中的数量关系,从而明确该用什么方法。
数学课小数乘法教学反思【第二篇】
10是一个特殊的数,既是记数的结果,又是记数单位,在计算中以10来进位和退位,也是20以内进位加法的基础,所以,“10的认识”是认数教学中关键的一课。本节课中,我努力体现以下几点:
一、 从动手操作让孩子理解10个一是1个十
10个一是1个十是建立新旧计数单位联系的重要内容,也是为孩子后续学习所需要的至关重要的内容。教学时我让孩子数小棒,边数边摆当数到9时停顿以下在摆一个,问孩子:有几根小棒?孩子很容易回答10根,这是马上指导孩子把10根小棒用皮套捆成一捆,让孩子用语言描述自己的操作过程:把10根小棒捆成一捆,跟着教给孩子10个一是1个十,有了直观的小棒及捆小棒的过程作依托孩子很容易的理解了。而后又用计数器,知道孩子边拨珠边数数,进一步巩固满十进一的十进制关系。
二、 通过实际让孩子感受到数学就在身边
学生列举了很多与10 有关的例子,如:10 个手指、10个脚趾、10个同学站一队、一捆小棒有10根,等通过让学生感受10可以表示物体的个数,数学就在身边。
三、设计利用刻度尺,让学生认识数的顺序,引导学生在直尺上认识数。让学生知道9和10的顺序是怎样的(9在10的前面,10在9的后面),接着我设计了小朋友喜欢的水果图,让学生说说喜欢吃哪些水果,体会从左数排第几,从右数排第几……. 充分调动小朋友的多种感官,形成并强化“10”的表象,理解10的序数意义和基数意义。
四、最后我特意设计了神舟七号飞船发射成功的情境,课件展示,让学生倒数10、9、8……(发射)。这样不但让学生体现在我们生活中10以内数字应用很广泛,增强学生学科学用科学的意识。
小数乘法教学反思汇总【第三篇】
教师的教学方案必须建立在学生的基础之上。新课程标准指出,“数学课程不仅要考虑教学自身的特点,更应遵循学生学习数学的心理规律,强调从学生已有的生活经验出发……数学教学活动必须建立在学生的认知发展水平和已有知识经验基础之上。”
笔者认为教学中成功的关健在于:教师的“教”立足于学生的“学”。
1、从学生的思维实际出发,激发探索知识的愿望,不同发展阶段的学生在认知水平、认知风格和发展趋势上存在差异,处于同一阶段的不同学生在认知水平、认知风格和发展趋势上也存在着差异。人的智力结构是多元的,有的人善于形象思维,有的人长于计算,有的人擅长逻辑思维,这就是学生 的实际。教学要越贴近学生的实际,就越需要学生自己来探索知识,包括发现问题,分析、解决问题。在引导学生感受算理与算法的过程中,放手让学生尝试,让学生主动、积极地参与新知识的形成过程中,并适时调动学生大胆说出自己的方法,然后让学生自己去比较方法的正确与否,简单与否。这样学生对算理与算法用自己的思维方式,既明于心又说于口。
2、遇到课堂中学生分析问题或解决问题出现错误,特别是一些受思维定势影响的“规律性错误”比如学生在处理商的小数点时受到小数加减法的影响。教师针对这种情况,是批评、简单否定还是鼓励大胆发言、各抒己见,然后让学生发现错误,验证错误?当然应该是鼓励学生大胆地发表自己的意见、看法、想法。学生对自己的方法等于进行了一次自我否定。这样对教学知识的理解就比较深刻,既知其然,又知其所以然。而且学生通过对自己提出的问题,分析或解决的问题提出质疑,自我否定,有利于学生促进反思能力与自我监控能力。
数学教学活动应该是一个从具体问题中抽象出数学问题,并用多种数学语言分析它,用数学方法解决它,从中获得相关的知识与方法,形成良好的思维习惯和应用数学的意识,感受教学创造的乐趣,增进学生学习数学的信心,获得对数学较为全面的体验与理解。因此,学生是数学学习的主人,教师应激发学生的学习积极性,要向学生提供充分从事数学活动的机会,帮助他们掌握基本的数学知识、技能、思想、方法,获得丰富的数学活动经验。
一个数除以小数“即”除数是小数的除法“是九年义务教育六年制小学数学第九册的重点知识之一。本节教材的重点是:除数是小数的除法转化成除数是整数的除法时小数点的移位法则。其关键是根据”除数、被除数同时扩大相同的倍数,商不变“的性质,把除数是小数的除法转化成除数是整数的除法。
1、 调查分析
在教学小数除法前一个星期,笔者对曾对班内十五位同学进行了一次简单的调查,(调查结果见附表)笔者认为学生存在很大的教学潜能,这些潜在的”能源“就是教学的依据,教学的资源。从上表可以得出以下结论:
(1) 学生对小数除法的基础掌握的比较巩固。
(2) 学生运用新知识解决实际问题的能力存在比较明显的差异,但不同的学生具有不同的潜力。
(3) 优秀学生与学习困难生对算理的理解在思维水平上有较大差异。但对竖式书写都不规范。
笔者认为小数除法如果按照教材按部就班教学是很不合理的,不仅浪费教学时间,而且不利于学生从整体上把握小数除法,不利于知识的系统性的形成,更不利于学生对知识的建构。因此,笔者选择了重组教材。(把例6例7与例8有机的结合在一起)
2、利用迁移,明确转化原理
理解除数是小数的除法的计算法则的算理是”商不变的性质“和”小数点位置移动引起小数大小变化的规律“,把除数是小数的除法转化成除数是整数的除法后就用”除数是整数的小数除法“计算法则进行计算。为了促进迁移,明确转化移位的原理,可设计如下环节:
(1)、小数点移动规律的复习
(2)、商不变规律的复习
(3)、移位练习
3、试做例题,掌握转化方法
明确转化原理后,让学生试算例题。在试做的基础上引导学生进行观察比较,抽象出转化时小数点的移位方法,最后概括总结出移位的法则。具体做法如下:
①。学生试做例题6例题7,并讲出每个例题小数点移位的方法。
②。学生试做例8
③。引导学生概括总结出转化时移位的方法,同时在此基础上归纳出除数是小数的除法计算法则。在得出计算法则后,还要注意强调:
(1)小数点向右移动的位数取决于除数的小数位数,而不由被除数的小数位数确定。
(2)整数除法中,两个数相除的商不会大于被除数,而在小数除法中,当除数小于1时,商反而比被除数大。
(3)要注意小数除法里余数的数值问题。对这一问题可举例说明。如:÷24,要使学生懂得余数是,而不是22。
4、专项训练,提高“转化”技能
除数是小数的除法,把除数转化成整数后,被除数可能出现以下情况:被除数仍是小数;被除数恰好也成整数;被除数末尾还要补“0”。针对上述情况可作专项训练:
①。竖式移位练习。练习在竖式中移动小数点位置时,要求学生把划去的小数点和移动后的小数点写清楚,新点上的小数点要点清楚,做到先划、再移、后点。这种练习小数点移位形象具体,学生所得到的印象深刻。
②。横式移位练习。练习在横式中移动小数点位置时,由于“划、移、点”只反映在头脑里,这就需要学生把转化前后的算式建立起等式,使人一目了然。
数学课小数乘法教学反思【第四篇】
学生在初一下学期学习了轴对称的有关知识,在学习中心对称知识时一方面要用这一知识作类比,另一方面又要防止轴对称概念对中心对称概念的干扰,在教学中本课在揭示了中心对称图形的概念,加强了和轴对称图形的辨析,并在练习中掌握它们的区别,让学生在类比和辨析中更好地掌握中心对称图形这一概念。
同样中心对称图形和两个图形成中心对称,这两个概念又充满了辨证关系,当把某个图形看作一个整体,这个图形就是中心对称图形;如果把这个图形的组成部分看作两个图形,则这两个图形关于这一点成中心对称。所以中心对称图形和两个图形成中心对称是一个事物的两个方面,其概念是相对而言的。这两个概念有助于学生辨证思维的培养,同时这两个概念的区别和联系的正确理解是本堂课的难点所在,在教学中,在学生已掌握中心对称图形这一概念后,通过动画演示让学生明确这是中心对称图形,接着将图形标上字母,并把两个三角形涂上不同的颜色,让学生把这个图形看作两个三角形,动画演示让其中一个三角形绕一点旋转180度与另一个三角形重合,从而揭示两个图形关于某一点成中心对称的概念,这样通过动画让学生明白了中心对称图形和两个图形成中心对称概念之间的区别
像这样运用直观形象的演示来演绎比较容易混淆的概念效果还的比较好的。
上一篇:半截蜡烛教学反思(精编5篇)
下一篇:我是什么教学反思精编3篇