二次根式 教学设计示例2【参考4篇】

网友 分享 时间:

【阅读指引】阿拉文库网友为您分享整理的“二次根式 教学设计示例2【参考4篇】”范文资料,以供您参考学习之用,希望这篇文档对您有所帮助,喜欢就下载分享给大家吧!

次根式教案【第一篇】

目 标

1. 熟练地运用二次根式的性质化简二次根式;

2. 会运用二次根式解决简单的实际问题;

3. 进一步体验二次根式及其运算的实际意义和应用价值。

教学设想

本节课的重点是:二次根式及其运算的实际应用;难点是:例7涉及多方面的知识和综合运用,思路比较复杂。

教 学 程序 与 策 略

一、预习检测

1.解决节前问题:

如图,架在消防车上的云梯AB长为15m,AD:BD=1 :,云梯底部离地面的距离BC为2m。你能求出云梯的顶端离地面的距离AE吗?

归纳:

在日常生活和生产实际中,我们在解决一 些问题,尤其是涉及直角三角形边长计算的问题时经常用到二次根式及其运算。

二、合作交流:

1、:如图,扶梯AB的坡比(BE与AE的长度之比)为1:,滑梯CD的坡比为1:,AE= 米,BC= CD。一男孩从扶梯走到滑梯的顶部,然后从滑梯滑下,他经过了多少路程(结果要求先化简,再取近似值,精确到米)

让学生有充分的。时间阅读问题,并结合图形分析问题:(1)所求的路程实际上是哪些线段的和?哪些线段的长是已知的?哪些线段的长是未知的?它们之间有什么关系?(2)列出的算式中有哪些运算?能化简吗?

注意解题格式

教 学 程 序 与 策 略

三、巩固练习:

完成课本P17、1,组长检查反馈;

四、拓展提高:

1:如图是一张等腰三角形彩色纸,AC=BC=40cm,将斜边上的高CD四等分,然后裁出3张宽度相等的长方形纸条。(1)分别求出3张长方形纸条的长度。(2)若用这些纸条为一幅正方形美术作品镶边(纸条不重叠),如右图,正方形美术作品的面积最大不能超过多少cm。

师生共同分析解题思路,请学生写出解题过程。

五、课堂小结:

1.谈一谈:本节课你有什么收获?

2.运用二次根式解决简单的实际问题时应注意的的问题

六、堂堂清

1: 作业本(2)

2:课本P17页:第4、5题选做。

次根式教案【第二篇】

教学目标

1.运用法则

进行二次根式的乘除运算;

2.会用公式

化简二次根式。

教学重点

运用

进行化简或计算

教学难点

经历二次根式的乘除法则的探究过程

教学过程

一、情境创设:

1.复习旧知:什么是二次根式?已学过二次根式的哪些性质?

2.计算:

二、探索活动:

1.学生计算;

2.观察上式及其运算结果,看看其中有什么规律?

3.概括:

得出:二次根式相乘,实际上就是把被开方数相乘,而根号不变。

将上面的公式逆向运用可得:

积的算术平方根,等于积中各因式的算术平方根的积。

三、例题讲解:

1.计算:

2.化简:

小结:如何化简二次根式?

1.(关键)将被开方数因式分解或因数分解,使之出现“完全平方数”或“完全平方式”;

结果中,被开方数应不含能开得尽方的因数或因式。

四、课堂练习:

(一).P62练习1、2

其中2中(5)

注意:

不是积的形式,要因数分解为36×16=242.

(二).P673计算(2)(4)

补充练习:

1.(x>0,y>0)

2.拓展与提高:

化简:1).(a>0,b>0)

2).(y

2.若,求m的取值范围。

☆3.已知:,求的值。

五、本课小结与作业:

小结:二次根式的乘法法则

作业:

1).课课练P9-10

2).补充习题

次根式教案【第三篇】

学习目标

1、知识与技能:了解二次根式的概念,能求根号内字母范围,理解二次根式的双重非负性,并能应用它解决相关问题。

2、过程与方法:进一步体会分类讨论的数学思想。

3、情感、态度与价值观:通过小组合作学习,体验在合作探索中学习数学的乐趣。

学习重难点

1、重点:准确理解二次根式的概念,并能进行简单的计算。

2、难点:准确理解二次根式的双重非负性。

学习内容课本第2—3页

学习流程

一、课前准备(预习学案见附件1)

学生在家中认真阅读理解课本中相关内容的知识,并根据自己的理解完成预习学案。

二、课堂教学

(一)合作学习阶段。

教师出示课堂教学目标及引导材料,各学习小组结合本节课学习目标,根据课堂引导材料中得内容,以小组合作的形式,组内交流、总结,并记录合作学习中碰到的问题。组内各成员根据课堂引导材料的要求在小组合作的前提下认真完成课堂引导材料。教师在巡视中观察各小组合作学习的情况,并进行及时的引导、点拨,对普遍存在的问题做好记录。

(二)集体讲授阶段。(15分钟左右)

1.各小组推选代表依次对课堂引导材料中的问题进行解答,不足的本组成员可以补充。

2.教师对合作学习中存在的普遍的不能解决的问题进行集体讲解。

3.各小组提出本组学习中存在的困惑,并请其他小组帮助解答,解答不了的由教师进行解答。

(三)当堂检测阶段

为了及时了解本节课学生的学习效果,及对本节课进行及时的巩固,对学生进行当堂检测,测试完试卷上交。

(注:合作学习阶段与集体讲授阶段可以根据授课内容进行适当调整次序或交叉进行)

三、课后作业(课后作业见附件2)

教师发放根据本节课所学内容制定的针对性作业,以帮助学生进一步巩固提高课堂所学。

四、板书设计

课题:二次根式(1)

二次根式概念例题例题

二次根式性质

次根式教案【第四篇】

一、内容和内容解析

1.内容

二次根式的除法法则及其逆用,最简二次根式的概念。

2.内容解析

二次根式除法法则及商的算术平方根的探究,最简二次根式的提出,为二次根式的运算指明了方向,学习了除法法则后,就有比较丰富的运算法则和公式依据,将一个二次根式化成最简二次根式,是加减运算的基础。

基于以上分析,确定本节课的教学重点:二次根式的除法法则和商的算术平方根的性质,最简二次根式。

二、目标和目标解析

1.教学目标

(1)利用归纳类比的方法得出二次根式的除法法则和商的算术平方根的性质;

(2)会进行简单的二次根式的除法运算;

(3)理解最简二次根式的概念。

2.目标解析

(1)学生能通过运算,类比二次根式的乘法法则,发现并描述二次根式的除法法则;

(2)学生能理解除法法则逆用的意义,结合二次根式的概念、性质、乘除法法则,对简单的二次根式进行运算。

(3)通过观察二次根式的运算结果,理解最简二次根式的特征,能将二次根式的运算结果化为最简二次根式。

三、教学问题诊断分析

本节内容主要是在做二次根式的除法运算时,分母含根号的处理方式上,学生可能会出现困难或容易失误,在除法运算中,可以先计算后利用商的算术平方根的性质来进行,也可以先利用分式的性质,去掉分母中的根号,再结合乘法法则和积的算术平方根的性质来进行。二次根式的除法与分式的运算类似,如果分子、分母中含有相同的因式,可以直接约去,以简化运算。教学中不能只是列举题型,应以各级各类习题为载体,引导学生把握运算过程,估计运算结果,明确运算方向。

本节课的教学难点为:二次根式的除法法则与商的算术平方根的性质之间的关系和应用。

四、教学过程设计

1.复习提问,探究规律

问题1.二次根式的乘法法则是什么内容?化简二次根式的一般步骤怎样?

师生活动,学生回答。

设计意图让学生回忆探究乘法法则的过程,类比该过程,学生可以探究除法法则。

五、目标检测设计

17 17315
");