人教版初中数学一元一次不等式教案范例(通用4篇)

网友 分享 时间:

【序言】由阿拉题库最美丽的网友为您整理分享的“人教版初中数学一元一次不等式教案范例(通用4篇)”教学资料,以供您学习参考之用,希望这篇文档资料对您有所帮助,喜欢就复制下载吧!

一元一次不等式教案【第一篇】

下面我来调查一下,你遇到这样的活动会去哪家超市?

(找同学回答,他们会选择哪家超市)

到底是哪位同学说的对呢,学习了今天的实际问题与一元一次不等式,答案就会揭晓。

请同学们打开课本的131页,今天我们就来学习一下实际问题与一元一次不等式。(板书课题)

(从生活中的问题入手,激发学生探索问题的兴趣,这是一个最优方案的选择问题,具有一定的开放性和探索性,解这类问题,一般要根据题目的条件,分别计算结果,再比较、择优。本题通过猜想,激发学生兴趣,让学生能分析题中相关条件,找到不等关系。充分进行讨论交流,在活动中体会不等式的应用。)

我们这节课的学习目标是:

一元一次不等式教案【第二篇】

尊敬的各位老师:

大家好,今天,我说课的内容是一元一次不等式。

对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材

教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

本节课主要讲述的是一元一次不等式的概念及其解法。

在本节课之前学生已经掌握了一元一次方程的相关知识和不等式的性质,所以,本节课类比一元一次方程的解法,利用不等式的性质解一元一次不等式。另外,本节课为后续学习解一元一次不等式组奠定基础。

不等式在日常生产生活中的应用很广泛,它与数、式、方程、函数甚至几何图形有着密切的联系,它几乎渗透到初中数学的每一部分。所以,本节课在数学领域中起着非常重要的地位。

二、说学情

合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。

本学段的学生逐渐掌握抽象概念和复杂的概念系统,能作科学定义,抽象逻辑思维逐步占优势。

本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元一次方程的具体的事例,所以在生活上面有了很多的经验基础。为本节课的顺利开展做好了充分准备。

三、说教学目标

根据以上对教材的。分析以及对学情的把握,我制定了如下三维目标:

(一)知识与技能

认识一元一次不等式,会解简单的一元一次不等式,类比一元一次方程的步骤,总结归纳解一元一次不等式的基本步骤。

(二)过程与方法

通过对比解一元一次方程的步骤,学生自己总结归纳一元一次不等式步骤的过程,提高归纳能力,并学会类比的学习方法。

(三)情感态度价值观

通过数学建模,提高对数学的学习兴趣。

四、说教学重难点

本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:

(一)教学重点

掌握一元一次不等式的概念,会解一元一次不等式并能够在数轴上表示出来。

(二)教学难点

元一次不等式教学反思【第三篇】

教后记今天讲列不等式组解应用题,学生的问题出在阅读上。有的学生懒得读题,一看那么长的题就烦了。其实,你带着他们分析,他们也能列出来。而猴子分花生的问题引起了学生的兴趣:把若干颗花生分给若干只猴子。如果每只猴子分3颗,就剩下8颗;如果每只猴子分5颗,那么最后一只猴子虽分到了花生,但不足5颗。问猴子有多少只,花生有多少颗?

有的学生用的是穷举法,换句话说,就是一个一个试。1只、2只、3只。试到5只时,满足条件了,学生说了:“老师,我算出来了,是5只!”有的还接着试,能试出6只也可以,而试到7只时就不满足条件了。所以,答案应该是两个:5只猴子,23颗花生;6只猴子,26颗花生。对于这种方法,我给予了充分的肯定,这是一种很好的方法,而且是学生容易理解、最易接受的一种方法,也说明了学生开动脑筋、认真思考了!当然,也说明学生对方程思想应用还是比较熟练的,但对于不等式思想解题还不习惯,所以我们有必要花大力气在学生已经理解的基础上进一步加大不等式解题的渗透,帮助学生从不等量关系入手,用不等式知识解题。

数量关系中的不等和相等是事物运动和平衡的反映,虽然量的不等是普遍的,绝对的,而量的相等是局部的、相对的。但初中教材对方程安排多些,在一定程度上误导学生应用方程思想解题,而不习惯从不等关系方面考虑问题,所以在学习这一章时,有必要加深学生对知识的理解以及对不等式解题的应用。

一元一次不等式说课稿【第四篇】

一、教材分析(说教材):

1、教材所处的地位和作用:

本节内容在全书及章节的地位是:《一元一次不等式、一元一次方程、一次函数》是苏科版八下第七章第七节内容。在此之前,学生已学习了一元一次不等式、一元一次方程、一次函数基础上,这为过渡到本节的学习起着铺垫作用。本节内容在初中数学学习阶段中,占据重要的地位,以及为其他学科和今后高中数学学习打下基础。

2、教育教学目标:

根据上述教材分析,考虑到学生已有的认知结构心理特征,制定如下教学目标:

(1)知识目标: 认识并理解一元一次不等式、一元一次方程、一次函数的内在联系及在解决问题时的不同作用。

(2)过程与方法 通过用一元一次不等式、一元一次方程、一次函数解决问题,培养学生用联系变化的观点看问题的意识及数形结合的解题能力。

(3)情感、态度与价值观

通过对解决实际问题的教学,引导学生从现实生活的经历与体验出发,激发学生对数学问题的兴趣,使学生了解数学知识的功能与价值,形成主动学习的态度,通过理论联系实际的方式,通过知识的应用,培养学生唯物主义的思想观点。

3:重点,难点以及确定的依据:

本课中一元一次不等式、一元一次方程、一次函数的内在联系是重点,灵活使用一元一次不等式、一元一次方程、一次函数解决实际问题是本课的难点,

下面,为了讲清重难点,使学生能达到本节课设定的教学目标,我再从教法和学法上谈谈:

二:教学策略:

教法:据本节课教学内容和八年级学生的年龄、心理特点及目标教学的要求,本节课采用引导探究法;让学生以观察实例为基础,用归纳的。方法形成概念,把教学过程转化为学生观察、发现、探究的过程,再现知识的“发生”和“发现”及“形成”的过程,让学生的知识形成网状结构,使知识能相互交融,培养学生触类旁通的能力。

学法:建构主义教学构想的核心思想是:通过问题的解决来学习。根据本节课的特点,采用自主探究、合作交流的探究式学习方法。

三:学情分析:(说学法)

1 、学生特点分析:

中学生心理学研究指出,初中阶段是智力发展的关键年龄,学生逻辑思维从经验型逐步向理论型发展,观察能力、记忆能力和想象能力也随着迅速发展。从年龄特点来看,初中学生好动、好奇、好表现,抓住学生特点,积极采用形象生动、形式多样的教学方法和学生广泛的、积极主动参与的学习方式,定能激发学生兴趣,有效地培养学生能力,促进学生个性发展。生理上,青少年好动,注意力易分散,爱发表见解,希望得到老师的表扬,所以在教学中应抓住学生这一生理特点,一方面要运用直观生动的形象,引发学生的兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性。

2、知识障碍上:

⑴知识掌握上,学生原有的知识一元一次不等式、一元一次方程、一次函数,许多学生出现知识遗忘,所以应全面系统对学生的自由讨论加以指导,引导学生如何研究一次不等式、一元一次方程、一次函数的内在联系,共同揭示“等与不等”这对矛盾的双方,在一定的条件下是可以转化,从而使学生更深刻地理解等与不等的辨证关系。

(2)学习本节课的知识障碍是一次不等式、一元一次方程、一次函数的内在联系

学生不易理解,所以教学中教师应予以简单明白、深入浅出的分析。

3、动机和兴趣上:

明确的学习目的。教师应在课堂上充分调动学生的学习积极性,激发来自学生主体的最有力的动力。

最后我来具体谈一谈这一堂课的教学过程:

四、 教学程序及设想:

1、由“弹簧挂物问题”导入

把教学内容转化为具有潜在意义的问题,让学生产生强烈的问题意识,使学生的整个学习过程成为“猜想”,继而紧张地沉思,期待寻找理由和证明过程。

在实际情况下进行学习,可以使学生利用已有知识与经验,同化和索引出当前学习的新知识,这样获取的知识,不但易于保持,而且易于迁移到陌生的问题情境中。在本问题中使学生感受到一元一次不等式、一元一次方程、一次函数的内在联系

2、导疑:得出本课新的知识点是:一元一次不等式、一元一次方程、一次函数的内在联系

3、导研:讲解例题。……我们在讲解例题时,不仅在于怎样解,更在于为什么这样解,而及时对解题方法和规律进行概括,有利于发展学生的思维能力。在题中:引导学生围挠一元一次不等式、一元一次方程、一次函数的内在联系展开从多个角度进行思考。

4、导练:课后练习使学生能巩固羡慕自觉运用所学知识与解题思想方法。

5、导评:总结结论,强化认识。知识性内容的小结,可把课堂教学传授的知识尽快化为学生的素质;数学思想方法的小结,可使学生更深刻地理解数学思想方法在解题中的地位和应用,并且逐渐培养学生的良好的个性品质目标。

6、变式延伸,进行重构。重视课本例题,适当对题目进行引申,使例题的作用更加突出,有利于学生对知识的串联、累积、加工,从而达到举一反三的效果。

7、板书。

8、布置作业。针对学生素质的差异进行分层训练,既使学生掌握基础知识,又使学有佘力的学生有所提高,从而达到拔尖和“减负”的目的。

(教学程序:

(一):课堂结构:导入、导疑、导研、导评、导练、布置作业等几部分。

(二):教学简要过程:

1:复习提问:(理由是: );2:导入讲授新课: ;3:课堂练习:4:新课巩固:5:作业布置;)

五:作业布置:略

17 151989
");