初中数学教案优秀18篇

网友 分享 时间:

通过生动的案例和互动活动,帮助学生理解数学概念,培养逻辑思维和解决问题的能力,提升数学学习兴趣。下面是勤劳的小编为大家分享的初中数学教案范例,欢迎借鉴参考。

初中数学教案 篇1

一、目的要求

1、使学生初步理解一次函数与正比例函数的概念。

2、使学生能够根据实际问题中的条件,确定一次函数与正比例函数的解析式。

二、内容分析

1、初中主要是通过几种简单的函数的初步介绍来学习函数的,前面三小节,先学习函数的概念与表示法,这是为学习后面的几种具体的函数作准备的,从本节开始,将依次学习一次函数(包括正比例函数)、二次函数与反比例函数的有关知识,大体上,每种函数是按函数的解析式、图象及性质这个顺序讲述的,通过这些具体函数的学习,学生可以加深对函数意义、函数表示法的认识,并且,结合这些内容,学生还会逐步熟悉函数的知识及有关的数学思想方法在解决实际问题中的应用。

2、旧教材在讲几个具体的函数时,是按先讲正反比例函数,后讲一次、二次函数顺序编排的,这是适当照顾了学生在小学数学中学了正反比例关系的知识,注意了中小学的衔接,新教材则是安排先学习一次函数,并且,把正比例函数作为一次函数的特例予以介绍,而最后才学习反比例函数,为什么这样安排呢?第一,这样安排,比较符合学生由易到难的认识规津,从函数角度看,一次函数的解析式、图象与性质都是比较简单的,相对来说,反比例函数就要复杂一些了,特别是,反比例函数的图象是由两条曲线组成的,先学习反比例函数难度可能要大一些。第二,把正比例函数作为一次函数的特例介绍,既可以提高学习效益,又便于学生了解正比例函数与一次函数的关系,从而,可以更好地理解这两种函数的概念、图象与性质。

3、“函数及其图象”这一章的重点是一次函数的概念、图象和性质,一方面,在学生初次接触函数的有关内容时,一定要结合具体函数进行学习,因此,全章的主要内容,是侧重在具体函数的讲述上的。另一方面,在大纲规定的几种具体函数中,一次函数是最基本的,教科书对一次函数的讨论也比较全面。通过一次函数的学习,学生可以对函数的研究方法有一个初步的认识与了解,从而能更好地把握学习二次函数、反比例函数的学习方法。

三、教学过程

复习提问:

1、什么是函数?

2、函数有哪几种表示方法?

3、举出几个函数的例子。

新课讲解:

可以选用提问时学生举出的例子,也可以直接采用教科书中的四个函数的例子。然后让学生观察这些例子(实际上均是一次函数的解析式),y=x,s=3t等。观察时,可以按下列问题引导学生思考:

(1)这些式子表示的是什么关系?(在学生明确这些式子表示函数关系后,可指出,这是函数。)

(2)这些函数中的自变量是什么?函数是什么?(在学生分清后,可指出,式子中等号左边的y与s是函数,等号右边是一个代数式,其中的字母x与t是自变量。)

(3)在这些函数式中,表示函数的自变量的式子,分别是关于自变量的什么式呢?(这题牵扯到有关整式的基本概念,表示函数的自变量的式子也就是等号右边的式子,都是关于自变量的一次式。)

(4)x的'一次式的一般形式是什么?(结合一元一次方程的有关知识,可以知道,x的一次式是kx+b(k≠0)的形式。)

由以上的层层设问,最后给出一次函数的定义。

一般地,如果y=kx+b(k,b是常数,k≠0)那么,y叫做x的一次函数。

对这个定义,要注意:

(1)x是变量,k,b是常数;

(2)k≠0 (当k=0时,式子变形成y=b的形式。b是x的0次式,y=b叫做常数函数,这点,不一定向学生讲述。)

由一次函数出发,当常数b=0时,一次函数kx+b(k≠0)就成为:y=kx(k是常数,k≠0)我们把这样的函数叫正比例函数。

在讲述正比例函数时,首先,要注意适当复习小学学过的正比例关系,小学数学是这样陈述的:

两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。

写成式子是(一定)

需指出,小学因为没有学过负数,实际的例子都是k>0的例子,对于正比例函数,k也为负数。

其次,要注意引导学生找出一次函数与正比例函数之间的关系:正比例函数是特殊的一次函数。

课堂练习:

教科书13、4节练习第1题.

初中数学教案 篇2

教学目标:

1、知识与技能:(1)通过学生熟悉的问题情景,以过探索有理数减法法则得出的过程,理解有理数减法法则的合理性。

(2)能熟练进行有理数的减法法则。

2、过程与方法

通过实例,归纳出有理数的减法法则,培养学生的逻辑思维能力和运算能力,通过减法到加法的转化,让学生初步体会人归的数学思想。

重点、难点

1、重点:有理数减法法则及其应用。

2、难点:有理数减法法则的应用符号的改变。

教学过程:

一、创设情景,导入新课

1、有理数加法运算是怎样做的?(-5)+3= —3+(—5)=

—3+(+5)=

2、-(-2)= -[-(+23)]=,+[-(-2)]=

3、20xx的某天,北京市的最高气温是-20C,最低气温是-100C,这天北京市的温差是多少?

导语:可见,有理数的减法运算在现实生活中也有着很广泛的应用。(出示课题)

二、合作交流,解读探究

1(-2)-(-10)=8=(-2)+8

2:珠穆朗玛峰海拔高度为8848米,与吐鲁番盆地海拔高度为-155米,珠穆朗玛峰比吐鲁番盆地高多少米?

3、通过以上列式,你能发现减法运算与加法运算的关系吗?

(学生分组讨论,大胆发言,总结有理数的减法法则)

减去一个数等于加上这个数的相反数

教师提问、启发:(1)法则中的“减去一个数”,这个数指的是哪个数?“减去”两字怎样理解?(2)法则中的“加上这个数的相反数”“加上”两字怎样理解?“这个数的相反数”又怎样理解?(3)你能用字母表示有理数减法法则吗?

三、应用迁移,巩固提高

1、例1 计算:

(1) 0-(-)(2)(-10)-(-6)(3)-

解:(1)0-(-)=0+=

(2)(-10)-(-6)=(-10)+6=-4

(3)-=+=1

2、课内练习:、2、3

3、游戏:两人一组,用扑克牌做有理数减法运算游戏(每人27张牌,黑牌� 每人每次出一张牌,两人轮流先出(先出者为被减数),先求出这两张牌点数之差者获胜,直至其中一人手中�

四、总结反思

(1) 有理数减法法则:减去一个数,等于加上这个数的相反数。

(2) 有理数减法的步骤:先变为加法,再改变减数的符号,最后按有理数加法法则计算。

五、作业

习题组1、2、5、6

备选题

填空:比2小-9的数是 。

а比а+2小 。

若а小于0,е是非负数,则2а-3е 0。

初中数学教案 篇3

一、教材分析

幂函数是学生在系统学习了指数函数、对数函数之后研究的又一类基本初等函数。是对函数概念及性质的应用,能进一步培养利用函数的性质(定义域、值域、图像、奇偶性、单调性)研究一个函数的意识。因而本节课更是一个对学生研究函数的方法和能力的综合提升。从概念到图象( ),利用这五个函数的图象探究其定义域、值域、奇偶性、单调性、公共点,概括、归纳幂函数的性质,培养学生从特殊到一般再到特殊的一般认知规律。从教材的整体安排看,学习了解幂函数是为了让学生进一步获得比较系统的函数知识和研究函数的方法,以便能将该方法迁移到对其他函数的研究。

二、教学目标分析

依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:

[知识与技能] 使学生了解幂函数的定义,会画常见幂函数的图象,掌握幂函数的图象和性质,初步学会运用幂函数解决问题,进一步体会数形结合的思想。

[过程与方法] 引入、剖析、定义幂函数的过程,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数学概念的学习方法;通过运用多媒体的教学手段,引领学生主动探索幂函数性质,体会学习数学规律的方法,体验成功的乐趣;对幂函数的性质归纳、总结时培养学生抽象概括和识图能力;运用性质解决问题时,进一步强化数形结合思想。

[情感、态度与价值观] 通过生活实例引出幂函数概念,使学生体会生活中处处有数学,激发学生的学习兴趣。通过本节课的学习,使学生进一步加深研究函数的规律和方法;提高学生的学习能力;养成积极主动,勇于探索,不断创新的学习习惯和品质;树立学科学,爱科学,用科学的精神。

三、重、难点分析

[教学重点]

(1)幂函数的定义与性质;

(2)指数α的变化对幂函数y=xα(α∈R)的影响。从知识体系看,前面有指数函数与对数函数的学习,后面有其他函数的研究,本节课的学习具有承上启下的作用;就知识特点而言,蕴涵丰富的数学思想方法;就能力培养来说,通过学生对幂函数性质的归纳,可培养学生类比、归纳概括能力,运用数学语言交流表达的能力。

[教学难点]

(1)指数α的变化对幂函数y=xα(α∈R)性态的影响。

(2)数形结合解决大小比较以及求参数的问题。从学生认知发展看,他们具备一定的学习新函数的能力,可以通过学习指数函数与对数函数的方法来类比,但毕竟幂函数在三种初等函数中是最难的,因为它分类的情况很多,且性质多而复杂,我采用让学生自己利用计算机作出函数的图像,从中归纳性质的方法来突破难点。

四、学情与教法分析

1. 学情分析

从学生思维特点来和认知结构看,前面学生已经学习指数函数与对数函数,对新函数的学习已经有了一定的经验。一方面可以把本节课与前面的指数函数与对数函数进行类比学习,但另一方面本节课分类情况多,性质归纳困难,尤其是三个函数放在一起可能产生混淆。对进入高中半个学期的学生来说,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。

2. 教法分析

学生思维活跃,求知欲强,但在思维习惯上还有待教师引导从学生原有的知识和能力出发,在教师的带领下创设疑问,通过合作交流,共同探索,逐步解决问题。采用引导发现式的教学方法,充分利用多媒体辅助教学。通过教师点拨,启发学生主动观察、主动思考、动手操作、自主探究来达到对知识的发现和接受。

3.教学构想

新课标的要求是通过实例,了解y=x,的图像,了解它们的变化情况。而原数学教学大纲要求掌握幂函数的概念及其图像和性质,在考查掌握函数性质和运用性质解决问题时,所涉及的幂函数f(x)=xα中 α限于在集合{-2,-1,-,1,2,3}中取值。新课标无论从内容的容量和难度上都要远低于旧课标。而苏教版的教材严格按照新课标要求处理此部分内容,内容体系均未超出课标要求。所以我们应以新课标为准绳,控制难度与要求。由于本节课的难点在于指数α的变化对幂函数y=xα(α∈R)性态的影响,本身幂函数比较抽象,所以我采用在多媒体教室让学生用Excel来模拟得到图象,再从图象上观察、归纳函数的性质。从心理学上讲,自己经历知识的发生发展过程,印象更深刻,学生容易接受与理解。

初中数学教案 篇4

教学目标:

1、经历收集数据、分析数据的活动,体会统计在实际生活中的应用。

2、收集统计在生活中应用的例子,整理收集数据的方法。

3、在解决问题的过程中,整理所学习的统计图,和统计量,能用自己的语言描述过各种统计图的特点,掌握整理收集数据的方法。

教学过程:

一、课前预习,出示预习提纲:

1、我们学习了哪几种统计图?

2、这几种统计图各有什么特点?

3、概率的知识有哪些?

二、展示与交流

(一)提出问题

1、(出示问题情境)我们班要和希望小学的六(1)班建立手拉手班级,怎么样向他们介绍我们班的一些情况呢?(指名回答)

2、师:先独立列出几个你想调查的问题。(写在练习本上)

3、四人小组交流,整理出你们小组都比较感兴趣的,又能实施的3个问题。(小组汇报、交流、整理)

4、接着全班汇报交流(师罗列在黑板上)

师:大家想调查这么多的问题,现在我们班选择其中有价值又能实施的问题进行调查。(师根据生的回答进行归纳、整理)

(二)收集数据和整理数据

1、师:调查这几个问题,你需要收集哪些数据?怎么样收集这些数据?与同伴交流收集数据的方法。

2、师:开展实际调查的话,如何进行调查比较有效?在调查的时候,大家需要注意什么?

(三)开展调查

1、针对学生提出的某个问题,先组织小组有效的开展收集和整理数据的活动,然后把数据记录下来,并进行整理。

2、师:谁来说一说你们小组是怎么样分工,怎么样调查和记录数据的?(指名汇报)

3、全班汇总、整理、归纳各小组数据。(板书)

4、师:分析上面的数据,你能得到哪些信息?

5、师:根据整理的数据,想一想绘制什么统计图比较好呢?

6、师:根据这些信息,你还能提出什么数学问题?

(四)回顾统计活动

1、师:在刚才的统计活动,我们都做了些什么?你能按顺序说一说吗?

师板书:提出问题——收集数据——整理数据——分析数据——作出决策。

2、收集在生活中应用统计的例子,并说说这些例子中的数据告诉人们哪些信息。(全班交流)

指名同学汇报,其他同学注意听,并指出这个同学举的例子中你可以获得什么信息?

3、结合生活中的例子说说收集数据有哪些方法?

(1)先让学生在小组内交流,引导学生结合例子(充分利用第2题中收集来的实例)来说说自己的方法。

(2)师归纳:常用的收集数据的方法有:查阅资料、询问他人、调查实验等。

4、师:同学们,我们已经对统计表和统计图进行了系统的学习,回忆一下我们已经学过了哪些统计图,对这些统计图,你已经知道了哪些知识?

初中数学教案 篇5

八、板书设计

? 不等式的解集

一、1.不等式的解集:一般地,一个含有未知数的不等式的所有的`解组成这个不等式的解的集合,简称不等式的解集.

2.解不等式:求不等式解的过程

二、在数轴上表示不等式的解集

1.    2.

三、注意:(1)“ · ”与“ °”;(2)“左边部分”与“右边部分”.

初中数学教案 篇6

教学目标

1、理解二元一次方程及二元一次方程的解的概念;

2.学会求出某二元一次方程的几个解和检验某对数值是否为二元一次方程的解;

3.学会把二元一次方程中的一个未知数用另一个未知数的一次式来表示;

4、在解决问题的过程中,渗透类比的思想方法,并渗透德育教育。

教学重点、难点

重点:二元一次方程的意义及二元一次方程的解的概念。

难点:把一个二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式,其实质是解一个含有字母系数的方程。

教学过程

1.情景导入:

新闻链接:桐乡70岁以上老人可领取生活补助,得到方程:80a+150b=

2.新课教学:

引导学生观察方程80a+150b=902880与一元一次方程有异同?

得出二元一次方程的概念:含有两个未知数,并且所含未知数的项的次数都是1次的方程叫做二元一次方程。

3.合作学习:

给定方程x+2y=8,男同学给出y(x取绝对值小于10的整数)的值,女同学马上给出对应的x的值;接下来男女同学互换。(比一比哪位同学反应快)请算的最快最准确的同学讲他的计算方法。提问:给出x的值,计算y的值时,y的�

作业布置

本章的课后的方程式巩固提高练习。

初中数学优秀教案 篇7

教学目标:

(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯

重点难点:

能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。

教学过程:

一、试一试

1、设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,

2、x的值是否可以任意取?有限定范围吗?

3、我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,

对于1.可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.

二、提出问题

某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:

1、商品的利润与售价、进价以及销售量之间有什么关系?

[利润=(售价-进价)×销售量]

2、如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?

[10-8=2(元),(10-8)×100=200(元)]

3、若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?

[(10-8-x);(100+100x)]

4、x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]

5、若设该商品每天的利润为y元,求y与x的函数关系式。

[y=(10-8-x)(100+100x)(0≤x≤2)]

将函数关系式y=x(20-2x)(0<x<10=化为:

y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)

三、观察;概括

1、教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;

(1)函数关系式(1)和(2)的自变量各有几个?

(各有1个)

(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)

(3)函数关系式(1)和(2)有什么共同特点?

(都是用自变量的二次多项式来表示的)

(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。

2、二次函数定义:形如y=ax2+bx+c(a、b、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.

四、课堂练习

1、(口答)下列函数中,哪些是二次函数?

(1)y=5x+1(2)y=4x2-1

(3)y=2x3-3x2(4)y=5x4-3x+1

2、P3练习第1,2题。

五、小结

1、请叙述二次函数的定义.

2、许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。

六、作业:略

初中数学教案 篇8

教学目的

1、使学生了解无理数和实数的概念,掌握实数的分类,会准确判断一个数是有理数还是无理数。

2、使学生能了解实数绝对值的意义。

3、使学生能了解数轴上的点具有一一对应关系。

4、由实数的分类,渗透数学分类的思想。

5、由实数与数轴的一一对应,渗透数形结合的思想。

教学分析

重点:无理数及实数的概念。

难点:有理数与无理数的区别,点与数的一一对应。

教学过程

一、复习

1、什么叫有理数?

2、有理数可以如何分类?

(按定义分与按大小分。)

二、新授

1、无理数定义:无限不循环小数叫做无理数。

判断:无限小数都是无理数;无理数都是无限小数;带根号的数都是无理数。

2、实数的定义:有理数与无理数�

3、按课本中列表,将各数间的联系介绍一下。

除了按定义还能按大小写出列表。

4、实数的相反数:

5、实数的绝对值:

6、实数的运算

讲解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?

例2,判断题:

(1)任何实数的偶次幂是正实数。( )

(2)在实数范围内,若| x|=|y|则x=y。( )

(3)0是最小的实数。( )

(4)0是绝对值最小的实数。( )

解:略

三、练习

P148 练习:3、4、5、6。

四、小结

1、今天我们学习了实数,请同学们首先要清楚,实数是如何定义的,它与有理数是怎样的关系,二是对实数两种不同的分类要清楚。

2、要对应有理数的相反数与绝对值定义及运算律和运算性质,来理解在实数中的运用。

五、作业

1、P150 习题A:3。

2、基础训练:同步练习1。

初中数学优秀教案 篇9

教学目标

1. 使学生掌握不等式的三条基本性质;

2. 培养学生观察、分析、比较的能力,提高他们灵活地运用所学知识解题的能力.

教学重点和难点

重点:不等式的三条基本性质的运用.

难点:不等式的基本性质3的运用.

课堂教学过程设计

一、从学生原有的认知结构提出问题

1. 什么叫不等式?说出不等式的三条基本性质.

2. 当x取下列数值时,不等式1-5x<16是否成立?

3,-4,-3,4,2.5,0,-1.

3. 用不等式表示下列数量关系:

(1) x的3倍大于x的2倍与5的差; (3)y的与x的的差小于2;

(2) y的一半与4的和是负数; (4)5与a的4倍的差不是正数.

4. 按照下列条件写出仍然成立的不等式,并说明根据不等式的哪一条基本性质:

(1)m>n,两边都减去3; (2)m>n,两边同乘以3;

(3)m>n,两边同乘以-3; (4)m>n,两边同乘以-3;

(5)m>n,两边同乘以 .

(以上各题中,从第2题开始,用投影仪打在屏幕上.学生在回答上述问题时,如遇到困难,教师应做适当点拨)在学生回答完上述问题的基础上,教师指出:本节课我们将通过学习例题和练习,进一步巩固并熟练掌握不等式的基本性质,尤其是不等式基本性质。

二、讲授新课

例1 在下列各题横线上填入不等号,使不等式成立.并说明是根据哪一条不等式基本性质.

(1)若a–3<9,则a_____12; (2)若-a<10,则a_____–10;

(3)若a>–1,则a_____–4; (4)若-a>,则a_____0.

答:(1)a<12,根据不等式基本性质1. (2)a>-10,根据不等式基本性质3.

(3)a>-4,根据不等式基本性质2. (4)a<0,根据不等式基本性质3.

(在讲授本课时,应启发学和在添加不等号“>”或“<”时,要和题目中的已知条件进行对比,观察它是根据不等式的哪条基本性质,是怎样由已知条件变形得到的.同时还应强调在运用不等式基本性质3时,不等号要改变方向=

例2 已知,用a<0,“<”或“>”号填空:

(1)a+2_____2; (2)a-1_____–1; (3)3a_____0; (4)a-1______0; (5)a2 _______0; (6)a3______0; (7)a-1______0; (8)|a|______0。

答:(1)a+2<2,根据不等式基本性质1. (2)a-1<-1,根据不等式基本性质1.

(3)因为3a,根据不等式基本性质2. (4)->0,根据不等式基本性质3.

(5)因为a<0,两边同乘以a<0,由不等式基本性质3,得a2>0.

(6)因为a<0,两边同乘以a2>0,由不等式基本性质2,得a3<0。

(7)因为a<0,两边同加上-1,由不等式基本性质1,得a-1<-1.

又已知,-1<0,所以a-1<0.

(8)因为。a<0,所以a≠0,所以|a|>0.

(本例题除了进一步运用不等式的三条基本性质外,还涉及了一些旧的基础知识,如a<0表示a是负数;a>0表示a是正数;|a|是非负数.后面几个小题较灵活,条件由具体数字改为抽象的字母,这里字母代表正数还是代表负数是解决问题的关键)

例外 判断下列各题的推导是否正确?为什么?(投影)(请学生回答)

(1)因为7.5>5.7,所以-7.5<-5.7; (2)因为a+8>4,,所以a>-4; (3)因为4a>4b,所以a>b; (4)因为a<b,所以<>'

(5)因为>-1,所以a>4; (6)因为-1>-2,所以-a-1>-a-2;

(7)因为3>2,所以3a>2a.

答:(1)正确,根据不等式基本性质3. (2)正确,根据不等式基本性质1.

(3)正确,根据不等式基本性质2. (4)不对,根据不等式基本性质3,应改为>; (5)因为>-1,所以a>4

答:(1)正确,根据不等式基本性质3。 (2)正确,根据不等式基本性质1。

(3)正确,根据不等式基本性质2。 (4)不对,根据不等式基本性质3,应改为。

(5)不对,根据不等式基本性质5,应改为a<4。

(6)正确,根据不等式基本性质1。 (7)不对,应分情况逐一讨论。

当a>0时,3a>2a。(不等式基本性质2)

当a=0时,3a<2a。

当a<0时,3a<2a。(不等式基本性质3)

(当学生在回答本题的过程当中,当遇到困难或问题时,教师应做适当引导、启发、帮助)

三、课堂练习(投影)

1。按照下列条件,写出仍能成立的不等式:

(1)由-2<-1,两边都加-a; (2)由-4x<0,两边都乘以-;

(3)由7>5,两边都乘以不为零的-a。

2?用“>”或“<”号填空:

(1)当a-b<0时,a______b: (2)当a<0,b<0时,ab_____0;

(3)当a<0,b<0时,ab____0; (4)当a>0,b<0时,ab____0;

(5)若a____0,b<0,则ab>0; (6)若<0,且b<0,则a_____0。

四、师生共同小结

在师生共同回顾本节课所学内容的基础上,教师指出:①在利用不等式的基本性质进行变形时,当不等式的两边都乘以(或除以)同一个字母,字母代表什么数是问题的关键,这决定了是用不等式基本性质2还是基本性质3,也就是不等号是否要改变方向的问题;②运用不等式基本性质3时,要变两个号,一个性质符号,另一个是不等号。

五、作业

1。根据不等式的基本性质,把下列不等式化成“x>a”或“x<a”的形式:

(1)x-1<0; (2)x>-x+6;

(3)3x>7; (4)-x<-3。

2。设a<b,用“>”或“>”号连接下列各题中的两个代数式:

(1)a-1,b-1; (2)a+2,b+2; (3)2a,2b;

(4); (5); (6)-b,-a。

3。用“>”号或“<”号填空:

(1)若a-b<0,则a_____b; (2)若b<0,则a+b_____a;

(3)若a=0,则a+b_____b; (4)若<0,则ab_____;

(5)b<a<2,则(a-2)(b-2)____0;(2-a)(2-b)____;(2-a)(a-b)。

课堂教学设计说明

由于本节课的教学目标是使学生进一步掌握不等式基本性质,尤其是基本性质3。故在设计教学过程时,注意在教师的主导作用下让学生以练为主,从而使学生在初步掌握不等式的三条基本性质的基础上,通过口答,笔做,讨论等不同的方式的练习,提高学生将不等式正确、灵活进行变形的能力。

初中数学教案 篇10

一、素质教育目标

(一)知识教学点:

使学生会用列一元二次方程的方法解有关面积、体积方面的应用问题

(二)能力训练点:

进一步培养学生化实际问题为数学问题的能力和分析问题解决问题的能力,培养用数学的意识

二、教学重点、难点

1.教学重点:

会用列一元二次方程的方法解有关面积、体积方面的应用题

2.教学难点:

找等量关系列一元二次方程解应用题时,应注意是方程的解,但不一定符合题意,因此求解后一定要检验,以确定适合题意的解.例如线段的长度不为负值,人的个数不能为分数等

三、教学步骤

(一)明确目标

(二)整体感知

(三)重点、难点的学习和目标完成过程

1.复习提问

(1)列方程解应用题的步骤?

(2)长方形的周长、面积?长方体的体积?

2.例1?现有长方形纸片一张,长19cm,宽15cm,需要剪去边长是多少的小正方形才能做成底面积为77cm2的无盖长方体型的纸盒?

解:设需要剪去的小正方形边长为xcm,则盒底面长方形的长为(19—2x)cm,宽为(15—2x)cm,

据题意:(19—2x)(15—2x)=77

整理后,得x2—17x+52=0,

解得x1=4,x2=13

∴当x=13时,15—2x=—11(不合题意,舍去)

答:截取的小正方形边长应为4cm,可制成符合要求的无盖盒子

练习1章节前引例.

学生笔答、板书、评价

练习2教材P。42中4

学生笔答、板书、评价

注意:全面积=各部分面积之和

剩余面积=原面积—截取面积

例2要做一个容积为750cm3,高是6cm,底面的长比宽多5cm的长方形匣子,底面的长及宽应该各是多少(精确到0。1cm)?

分析:底面的长和宽均可用含未知数的代数式表示,则长×宽×高=体积,这样便可得到含有未知数的'等式——方程

解:长方体底面的宽为xcm,则长为(x+5)cm,

解:长方体底面的宽为xcm,则长为(x+5)cm,

据题意,6x(x+5)=750,

整理后,得x2+5x—125=0

解这个方程x1=9。0,x2=—14。0(不合题意,舍去)

当x=9。0时,x+17=26。0,x+12=21。0.

答:可以选用宽为21cm,长为26cm的长方形铁皮

教师引导,学生板书,笔答,评价

(四)总结、扩展

1.有关面积和体积的应用题均可借助图示加以分析,便于理解题意,搞清已知量与未知量的相互关系

2.要深刻理解题意中的已知条件,正确决定一元二次方程的取舍问题,例如线段的长不能为负

3.进一步体会数字在实践中的应用,培养学生分析问题、解决问题的能力

四、布置作业

教材P42中A3、6、7

教材P41中3、4

五、板书设计

初中数学教案 篇11

教学目标:

1、知识与技能:通过对多种实际问题的分析,感受方程作为刻画现实世界有效模型的意义。

2、过程与方法:通过观察,归纳一元一次方程的概念。

3、情感与态度:体验数学与日常生活密切相关,认识到许多实际问题可以用数学方法解决。

教学重点:

归纳一元次方程的概念

教学难点:

感受方程作为刻画现实世界有效模型的意义。

教学过程:

一、情景导入:

我能猜出你们的年龄,相信吗?

只要任何一个同学回答我一个问题,我就能马上猜到他的年龄是多少岁,我们来试试吧。

问:你的年龄乘以2加3等于多少?

学生说出结果,教师猜测年龄,并问:你们知道我是怎么做的吗?

学生讨论并回答

二、知识探究:

1、方程的教学(投影演示)

小彬和小明也在进行猜年龄游戏,我们来看一看。

找出这道题中的等量关系,列出方程。

大家观察,这两个式子有什么特点。

讨论并回答:什么是方程?方程有哪些特点?

2、 判断下列式子是不是方程?

(1)X+2=3(是)(2)X+3Y=6(是)

(3)3M-6(不是)(4)1+2=3(不是)

(5)X+3>5(不是)(6)Y-12=5(是)

三、合作交流

1、如果告诉我们一些实际生活中的问题,大家能够自己列出方程吗?(投影演示)

情景一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树苗长高约15厘米,大约几周后树苗长高到1米?

你能找出题中的等量关系吗?怎样列方程?由此题你们想到了些什么?

情景二:第五次全国人口普查统计数据(20xx年3月28日新华社公布)

截至20xx年11月1日0时,全国每10万人中具有大学文化程度的人数为3611人,比1990年7月1日0时增长了%

1990年6月底每10万人中约有多少人具有大学文化程度?情景三:西湖中学的体育场的足球场,其周长为200米,长和宽之差为12米,这个足球场的长和宽分别是多少米?

下面是刚才根据几道情景题所列的方程,分析下列方程有何共同点?

2X–5=21

40+15X=100

X(1+﹪)=3611

2[X+(X+12)]=200

2[Y+(Y–12)]=200

在一个方程中,只含有一个未知数X(元),并且未知数的指数是1(次),这样的方程叫一元一次方程。

问:大家刚才都已经自己列出了方程,那个同学能够说一下你是怎样列出方程的,列方程应该分为那几步呢?

生:分组讨论,回答列方程的步骤(1)找等量关系(2)设未知数(3)列方程

四、随堂练习

1、投影趣味习题,

2、做一做

下面有两道题,请选做一题。

(1)、请根据方程2X+3=21自己设计一道有实际背景的应用题。

(2)、发挥你的想象,用自己的年龄编一道应用题,并列出方程。

五、课堂小节

1、这节课你学到了什么?

2、这节课给你印象最深的是什么?

六、作业:

分组布置

初中数学优秀教案 篇12

一、教学目的:

1、理解并掌握菱形的定义及两个判定方法;会用这些判定方法进行有关的论证和计算;

2、在菱形的判定方法的探索与综合应用中,培养学生的观察能力、动手能力及逻辑思维能力.

二、重点、难点

1、教学重点:菱形的两个判定方法.

2、教学难点:判定方法的证明方法及运用.

三、例题的意图分析

本节课安排了两个例题,其中例1是教材P109的例3,例2是一道补充的题目,这两个题目都是菱形判定方法的直接的运用,主要目的是能让学生掌握菱形的判定方法,并会用这些判定方法进行有关的论证和计算.这些题目的推理都比较简单,学生掌握起来不会有什么困难,可以让学生自己去完成.程度好一些的班级,可以选讲例3.

四、课堂引入

1、复习

(1)菱形的定义:一组邻边相等的平行四边形;

(2)菱形的性质1:菱形的四条边都相等;

性质2:菱形的对角线互相平分,并且每条对角线平分一组对角;

(3)运用菱形的定义进行菱形的判定,应具备几个条件?(判定:2个条件)

2、【问题】要判定一个四边形是菱形,除根据定义判定外,还有其它的判定方法吗?

3、【探究】(教材P109的探究)用一长一短两根木条,在它们的中点处固定一个小钉,做成一个可转动的十字,四周围上一根橡皮筋,做成一个四边形.转动木条,这个四边形什么时候变成菱形?

通过演示,容易得到:

菱形判定方法1对角线互相垂直的平行四边形是菱形.

注意此方法包括两个条件:(1)是一个平行四边形;(2)两条对角线互相垂直.

通过教材P109下面菱形的作图,可以得到从一般四边形直接判定菱形的方法:

菱形判定方法2四边都相等的四边形是菱形.

五、例习题分析

例1(教材P109的例3)略

例2(补充)已知:如图ABCD的对角线AC的垂直平分线与边AD、BC分别交于E、F.

求证:四边形AFCE是菱形.

证明:∵四边形ABCD是平行四边形,

∴AE∥FC.

∴∠1=∠2.

又∠AOE=∠COF,AO=CO,

∴△AOE≌△COF.

∴EO=FO.

∴四边形AFCE是平行四边形.

又EF⊥AC,

∴AFCE是菱形(对角线互相垂直的平行四边形是菱形).

※例3(选讲)已知:如图,△ABC中,∠ACB=90°,BE平分∠ABC,CD⊥AB与D,EH⊥AB于H,CD交BE于F.

求证:四边形CEHF为菱形.

略证:易证CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因为∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF.

所以,CF=CE=EH,CF∥EH,所以四边形CEHF为菱形.

六、随堂练习

1、填空:

(1)对角线互相平分的四边形是;

(2)对角线互相垂直平分的四边形是________;

(3)对角线相等且互相平分的四边形是________;

(4)两组对边分别平行,且对角线的四边形是菱形.

2、画一个菱形,使它的两条对角线长分别为6cm、8cm.

3、如图,O是矩形ABCD的对角线的交点,DE∥AC,CE∥BD,DE和CE相交于E,求证:四边形OCED是菱形。

七、课后练习

1、下列条件中,能判定四边形是菱形的是

(A)两条对角线相等(B)两条对角线互相垂直

(C)两条对角线相等且互相垂直(D)两条对角线互相垂直平分

2、已知:如图,M是等腰三角形ABC底边BC上的中点,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC.求证:四边形MEND是菱形.

3、做一做:

设计一个由菱形组成的花边图案.花边的长为15cm,宽为4cm,由有一条对角线在同一条直线上的四个菱形组成,前一个菱形对角线的交点,是后一个菱形的一个顶点.画出花边图形.

数学初中教案 篇13

教学目标知识目标:

1.理解平行线分三角形两边成比例定理;

2.进一步熟悉平行线分三角形两边成比例定理的应用;

能力目标:

培养学生的观察、分析、概括能力;

德育目标:

了解特殊与一般的辩证关系;

教学重点定理的推导与应用

教学难点成比例的线段中比例线段的确认

教具学具多媒体 三角板

教学方法讲练结合

过程教学内容学生活动设计意图

一、复习提问 引入新课

问题:

1、三角形中位线定理的推论是什么?

2、如何用几何语言描述?

3、定理结论用比例尺如何表述?

二、新课

1、议一议

如图DE∥BC

(1)如果 ,那么 等于多少?为什么?

学生定理内容,用几何语言描述定理并用比例表示

学生进行讨论,通过教师引导,得出对应结论。为新课作铺垫

培养学生的观察、分析能力

(2)如果 ,是否也有 呢?为什么?

(3)如果把条件改为 那么 是否还与 相等?为什么?

教师进行简单说明。

2、由此我们可以得到什么样的结论?如何描述?

这个比例关系还可以怎么表示?为什么?

平行线分三角形两边成比例定理:

平行于三角形一边的直线截其他两边,所得的对应线段成比例。

例1已知:如图,在△ABC中,DE∥BC,AD=4,DB=3,AC=10,求AE、EC的长。

学生概括用几何语言表示:

DE∥BC

应用比例性质完成比例变式

学生完成一步推理:

DE∥BC

学生思考,自己尝试解题

复习比例性质,灵活运用定理

帮助记忆、加深印象

加深定理理解

解题过程:略

练习:

选择课后习题练习

学生练习

灵活运用定理

小结平行线分三角形两边成比例定理;

注意把对应线段写在对应位置

板书设计平行线分三角形两边成比例

1、定理 2、例1 3、练习

布置作业同步练习节选

课后自评

初中数学教案 篇14

一、教学任务分析

1、教学目标定位

根据《数学课程标准》和素质教育的要求,结合学生的认知规律及心理特征而确定,即:七年级的学生对身边有趣事物充满好奇心,对一些有规律的问题有探求的欲望,有很强的表现欲,同时又具备了一定的归纳、总结表达的能力。因此,确定如下教学目标:

(1).知识技能目标

让学生掌握多边形的内角和的公式并熟练应用。

(2).过程和方法目标

让学生经历知识的形成过程,认识数学特征,获得数学经验,进一步发展学生的说理意识和简单推理,合情推理能力。

(3).情感目标

激励学生的学习热情,调动他们的学习积极性,使他们有自信心,激发学生乐于合作交流意识和独立思考的习惯。。

2、教学重、难点定位

教学重点是多边形的内角和的得出和应用。

教学难点是探索和归纳多边形内角和的过程。

二、教学内容分析

1、教材的地位与作用

本课选自人教版数学七年级下册第七章第三节《多边形的内角和》的第一课时。本节课作为第七章第三节,起着承上启下的作用。在内容上,从三角形的内角和到多边形的内角和,层层递进,这样编排易于激发学生的学习兴趣,很适合学生的认知特点。

2、联系及应用

本节课是以三角形的知识为基础,仿照三角形建立多边形的有关概念。因此

多边形的边、内角、内角和等等都可以同三角形类比。通过这节课的学习,可以培养学生探索与归纳能力,体会把复杂化为简单,化未知为已知,从特殊到一般和转化等重要的思想方法。而多边形在工程技术和实用图案等方面有许多的实际应用,下一节平面镶嵌就要用到,让学生接触一些多边形的实例,可以加深对它的概念以及性质的理解。

三、教学诊断分析

学生对三角形的知识都已经掌握。让学生由三角形的内角和等于180°,是一个定值,猜想四边形的内角和也是一个定值,这是学生很容易理解的地方。由几个特殊的四边形的内角和出发,譬如长方形、正方形的内角和都等于360°,可知如果四边形的内角和是一个定值,这个定值是360°。要得到四边形的内角和等于360°这个结论最直接的方法就是用量角器来度量。让学生动手探索实践,在探索过程中发现问题"度量会有误差"。发现问题后接着引导学生联想对角线的作用,四边形的一条对角线,把它分成了两个三角形,应用三角形的内角和等于180°,就得到四边形的内角和等于360°。让学生从特殊四边形的内角和联想一般四边形的内角和,并在思想上引导,学习将新问题化归为已有结论的思想方法,这里学生都容易理解。课堂教学设计中,在探究五边形,六边形和七边形的内角和时,让学生动手实践,设置探究活动二,为了让学生拓宽思路,从不同的角度去思考这个问题,这个活动对学生的动手能力要求进一步提高了,学生对这个问题的理解稍微有些难度,但学生可根据自己本身的特点来加以补充和完善。在教学设计中,要求根据小组选择的方法探索多边形的内角和。首先,小组内各个成员对所选择的方法要了解,能够把掌握的知识运用到实践中;再者,小组内各个成员需要分工协作,才能够顺利的把任务完成;最后,学生还需要把自己的思维从感性认识提升到理性认识的高度,这样就培养了学生合情推理的意识。

四、教法特点及预期效果分析本节课借鉴了美国教育家杜威的"在做中学"的理论和叶圣陶先生所倡导的"解放学生的手,解放学生的大脑,解放学生的时间"的思想,我确定如下教法和学法:

1、教学方法的设计

我采用了探究式教学方法,整个探究学习的过程充满了师生之间,学生之间的交流和互动,体现了教师是教学活动的组织者、引导者、合作者,学生才是学习的主体。

2、活动的开展

利用学生的好奇心设疑、解疑,组织活泼互动、有效的教学活动,鼓励学生积极参与,大胆猜想,使学生在自主探索和合作交流中理解和掌握本节课的内容。

3、现代教育技术的应用

我利用课件辅助教学,适时呈现问题情景,以丰富学生的感性认识,增强直观效果,提高课堂效率。探究活动在本次教学设计中占了非常大的比例,探究活动一设置目的让学生动手实践,并把新知识与学过的三角形的相关知识联系起来;探究活动二设置目的让学生拓宽思路,为放开书本的束缚打下基础;培养学生动手操作的能力和合情推理的意识。通过师生共同活动,训练学生的发散性思维,培养学生的创新精神;使学生懂得数学内容普遍存在相互联系,相互转化的特点。练习活动的设计,目的一检查学生的掌握知识的情况,并促进学生积极思考;目的二凸现小组合作的特点,并促进学生情感交流。

以上是我对《多边形的内角和》的教学设计说明。

初中数学教案 篇15

教学目标:

利用数形结合的数学思想分析问题解决问题。

利用已有二次函数的知识经验,自主进行探究和合作学习,解决情境中的数学问题,初步形成数学建模能力,解决一些简单的实际问题。

在探索中体验数学来源于生活并运用于生活,感悟二次函数中数形结合的美,激发学生学习数学的兴趣,通过合作学习获得成功,树立自信心。

教学重点和难点:

运用数形结合的思想方法进行解二次函数,这是重点也是难点。

教学过程:

(一)引入:

分组复习旧知。

探索:从二次函数y=x2+4x+3在直角坐标系中的图象中,你能得到哪些信息?

可引导学生从几个方面进行讨论:

(1)如何画图

(2)顶点、图象与坐标轴的交点

(3)所形成的三角形以及四边形的面积

(4)对称轴

从上面的问题导入今天的课题二次函数中的图象与性质。

(二)新授:

1、再探索:二次函数y=x2+4x+3图象上找一点,使形成的图形面积与已知图形面积有数量关系。例如:抛物线y=x2+4x+3的顶点为点A,且与x轴交于点B、C;在抛物线上求一点E使SBCE= SABC。

再探索:在抛物线y=x2+4x+3上找一点F,使BCE与BCD全等。

再探索:在抛物线y=x2+4x+3上找一点M,使BOM与ABC相似。

2、让同学讨论:从已知条件如何求二次函数的解析式。

例如:已知一抛物线的顶点坐标是C(2,1)且与x轴交于点A、点B,已知SABC=3,求抛物线的解析式。

(三)提高练习

根据我们学校人人皆知的船模特色项目设计了这样一个情境:

让班级中的上科院小院士来简要介绍学校船模组的情况以及在绘制船模图纸时也常用到抛物线的知识的情况,再出题:船身的龙骨是近似抛物线型,船身的最大长度为48cm,且高度为12cm。求此船龙骨的抛物线的解析式。

让学生在练习中体会二次函数的图象与性质在解题中的作用。

(四)让学生讨论小结(略)

(五)作业布置

1、在直角坐标平面内,点O为坐标原点,二次函数y=x2+(k—5)x—(k+4)的图象交x轴于点A(x1,0)、B(x2,0)且(x1+1)(x2+1)=—8。

(1)求二次函数的解析式;

(2)将上述二次函数图象沿x轴向右平移2个单位,设平移后的图象与y轴的交点为C,顶点为P,求 POC的面积。

2、如图,一个二次函数的图象与直线y= x—1的交点A、B分别在x、y轴上,点C在二次函数图象上,且CBAB,CB=AB,求这个二次函数的解析式。

3、卢浦大桥拱形可以近似看作抛物线的一部分,在大桥截面1:11000的比例图上,跨度AB=5cm,拱高OC=0。9cm,线段DE表示大桥拱内桥长,DE∥AB,如图1,在比例图上,以直线AB为x轴,抛物线的对称轴为y轴,以1cm作为数轴的单位长度,建立平面直角坐标系,如图2。

(1)求出图2上以这一部分抛物线为图象的函数解析式,写出函数定义域;

(2)如果DE与AB的距离OM=0。45cm,求卢浦大桥拱内实际桥长(备用数据: ,计算结果精确到1米)

初中数学优秀教案 篇16

教学设计思想:本节安排1课时讲授;影子是生活中常见的现象,教学中引用太阳光照射下的影子种种生活中的实例,目的是让学生体会影子在生活中的存在,激发学习的兴趣。课前布置作业让学生观察不同时刻物体影子的变化,亲自感受变化的情况,再通过教师讲授逐步加深对投影相关概念的理解,并掌握其应用。

教学目标:

1.知识与技能

经历实践、探索的过程,知道平行投影、正投影的含义;

能够确定物体在太阳光下的影子的特征;

知道在不同时刻物体在太阳光下形成的影子的大小和方向是不同的。

2.过程与方法

通过观察、想象、实践形成一定的空间想象能力,发展空间观念;

探索不同时刻不同物体的影子的变化规律:影子长的比等于物体高度的比。

3.情感、态度与价值观

通过理论研究自然现象,引发对大自然和社会生活探索的欲望,提高学习兴趣,增进数学的应用意识。

教学重点:理解平行投影的含义。

教学难点:通过对平行投影的认识进行物体与投影之间的相互转化。

教学方法:启发式。

教学安排:1课时。

教学媒体:幻灯片。

教学过程:

课前准备:让学生在课前观察物体在阳光下的影子,自己总结出一些结论。

一、创设情景

问题1:

师:请看这幅图片,哪位同学知道这是什么?(提出问题,激发学生的兴趣)

教师陈述:日晷是我国古代利用日影测定时刻的仪器,它由“晷面”和“晷针”组成。

当太阳光照在日晷上时,晷针的影子就会投向晷面。随着时间的推移,晷针的影子在晷面上慢慢地移动。以此来显示时刻。(看下图)

设疑激趣:利用古代显示时刻的物体来引起学生的兴趣。

二、引出课题

问题2:

师:太阳光可看成平行的直线,在阳光下,我们经常看见物体的影子,那同学们你们知道影子的长短和方向在一天中是怎样变化的吗?

下面我们来看几副图片:(幻灯显示)

(1) (2) (3)

上面的三幅图是在我国北方某地某天上午不同时刻的同一位置拍摄的,请根据树的影子,判断拍摄的先后顺序,并说明理由。

生:通过这几天观察,如果上午观察物体的影子,都是逐渐变短的一个过程,所以拍摄的先后顺序是:(3)→(2)→(1)。

师:这位同学回答的很正确;但是哪位同学能解释一下呢?

生:上午太阳从东方地平线上升起,逐渐升高,这里我们把太阳光线看成平行的直线,根据以前我们学过的几何知识,通过画图,显而易见影子随着太阳的升高逐渐变短的。

师:回答的很好;根据上面的总结,我们观看下面的图片,观察有什么变化?

在我国北方地区,人们居住的房屋窗户大多是朝南的,中午某时刻室内的窗影在一年四季里会有什么变化呢?

学生相互讨论,交流。

生:夏天的时候影子是最短的,冬天是最长的,春秋次之。

活动:学生有丰富的关于影子的生活经验,让他们结合经验想象自己的影子从早到晚是如何变化的(包括大小和方向)?并叫三个学生代表太阳、物体、影子,模拟太阳东升西落。得出结论:大——小——大;西——北偏西——正北——北偏东——东。

教师总结:物体在光线的照射下,会在地面或墙面上留下它的影子,这种现象就是投影(projection)。

太阳的光线可看做平行线的,像这样的光线照射在物体上,所形成的投影叫做平行投影。光线是投影线,地面或墙面是投影面。

如上图,用一束平行光线竖直照射水平放置的三角尺上,投影线、三角尺在水平面上的投影是平行投影。在这种平行投影中,光线是竖直照射在水平面上的。像这种平行投影又叫做正投影。

现在大家对投影有了一定的了解,再看下面这个图形,思考问题:[

如图,正方体正面(R面)在V面上的正投影 。

1.R面的正投影是什么图形?与R面相对的面的在正投影是什么图形?

2.Q面的正投影是什么图形?与Q面相对的面的正投影是什么图形?

3.P面及与它相对的面的正投影分别是什么图形?

学生相应回答上面的问题。

师:我们学习了投影的相关概念,也观看了许多投影的图片,那同学们思考这样的问题:

(1)一个物体的正投影是立体图形还是平面图形?

(2)点、线段和多边形的正投影可能分别是什么图形?

第一问显而易见,教师可以找中下等学生回答。

第二问教师可以通过课件演示,学生观看,回答问题。(参看课件:点、线、面的投影)

师生互动:

例:旗杆直立在A处,它的平行投影如图所示。

(1)请画出小明站在B处时的投影(用线段表示)。并说明你这样画的理由。

(2)如果小明站在C处,请画出他的投影(用线段表示),并比较小明站在B、C两处投影的长短。

(3)旗杆的高度与它投影长的比和小明的身高与他投影长的比有什么关系?为什么?

学生在教师的引导下,自主完成这道例题,教师再进行讲解。

教师总结:一般地,两个直立于地面的物体在阳光下的投影,或平行或在同一条直线上,两个物体、他们的平行投影及过物体顶端的投影线,分别组成直角三角形,这两个三角形相似。

三、练习

1.大致说出我国北方的确一天中(早晨、中午、傍晚),人在阳光下的投影的方向和长短。

2.下图是一棵大树在阳光下的投影,请画出另一棵树的投影(用线段表示)。

3.结合地理知识,谈谈在我国哪些地区会有太阳直射现象。这时人的投影是什么样的?

四、课堂总结

板书设计:

平行投影

一、导入 平行投影

问题1: 正投影

二、新授 例:

问题2:

三、练习

投影:

四、总结

初中数学教案 篇17

一、检查反馈

本次检查大多数教师都比较重视,检查内容完整、全面。现将检查情况总结如下教案方面的特点与不足。

特点:

1、绝大多数教案设计完整,教学重点、难点突出,设置得当,紧紧围绕新课标,例如:刘兴华、孙菊、江文李雅芳等能突出对学科素养的高度关注。教师撰写的课后反思能体现教师对教材处理的新方法,能侧重对自己教法和学生学法的指导,并且还能对自己不得法的教学手段、方式、方法进行深刻地解剖,能很好地体现课堂教学的反思意识,反思深刻、务实、有针对性。

2、注重选择恰当的教学方法,注重在灵活多样的教学方法中培养学生的合作意识和创新精神。

3、教案能体现多媒体教学手段,注重培养学生的探究精神和创新能力。

不足:

1、教案后的教学反思不够认真、不够详细,没能对本堂课的得与失作出记录与小结,从中也可以看出我们对课后反思还不够重视。

2、个别教师教案过于简单。

作业方面的特点与不足

特点:

1、能按进度布置作业,作业设置量度适中,难易适中,上交率较高,且都能做到全批全改。

2、作业批改公平、公正,有一定的等级评定。教师批改要求严格、细致,能够反映学生作业中的错误做法及纠正措施。

3、学生在书写方面有很大进步。从检查可以发现教师对学生作业的书写格式有明确的要求。

不足:

1、对于学生书写的工整性,还需加强教育。

2、教师在批阅作业时,要稍细心些,发现问题就让学生当时改正,学生也就会逐渐养成做事认真的习惯。

初中数学教案 篇18

单元要点分析

教材内容

1.本单元教学的主要内容。

一元二次方程概念;解一元二次方程的方法;一元二次方程应用题。

2.本单元在教材中的地位与作用。

一元二次方程是在学习《一元一次方程》、《二元一次方程》、分式方程等基础之上学习的,它也是一种数学建模的方法。学好一元二次方程是学好二次函数不可或缺的,是学好高中数学的奠基工程。应该说,一元二次方程是本书的重点内容。

教学目标

1.知识与技能

了解一元二次方程及有关概念;掌握通过配方法、公式法、因式分解法降次──解一元二次方程;掌握依据实际问题建立一元二次方程的数学模型的方法;应用熟练掌握以上知识解决问题。

2.过程与方法

(1)通过丰富的实例,让学生合作探讨,老师点评分析,建立数学模型。根据数学模型恰如其分地给出一元二次方程的概念。

(2)结合八册上整式中的有关概念介绍一元二次方程的派生概念,如二次项等。

(3)通过掌握缺一次项的一元二次方程的解法──直接开方法,导入用配方法解一元二次方程,又通过大量的。练习巩固配方法解一元二次方程。

(4)通过用已学的配方法解ax2+bx+c=0(a0)导出解一元二次方程的求根公式,接着讨论求根公式的条件:b2-4ac0,b2-4ac=0,b2-4ac0.

(5)通过复习八年级上册《整式》的第5节因式分解进行知识迁移,解决用因式分解法解一元二次方程,并用练习巩固它。

(6)提出问题、分析问题,建立一元二次方程的数学模型,并用该模型解决实际问题。

17 3700877
");