七年级数学《绝对值》教案精编3篇

网友 分享 时间:

【前言导读】此篇优秀教案“七年级数学《绝对值》教案精编3篇”由阿拉题库网友为您精心整理分享,供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载吧!

七年级数学绝对值教案1

导学目标

1、借助数轴,初步理解绝对值的概念,能求一个数的绝 对值,会利用绝对值比较两个负数的大小。

2、通过应用绝对值解决实际问题绝对值的意义和作用。

导学重点:

正确理解绝对值的概念?

导学难点:

负数大小比较??

导学过程

温故:

1、下列各数中:

+7,—2, ,—8?3,0,+0?01,— ,1 ,哪些是正数?哪些是负数?哪些是非负数?

2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:

—3,4,0,3,—1?5,—4, ,2?

链接:

问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?

知新:

1、什么叫绝对值?

在数轴上,一个数所对应的点与 的 叫做这个 数的绝对值.例如+5的绝对值等于5,记作+5=5 ;—3的绝对值等于3,记作 。

2、绝对值的`特点有哪些?

(1)一个正数的绝对值是 ;例如,4= , +7。1 = 。

(2)一个负数的绝对值是 ;例如,-2= ,-5。2= 。

(3)0的绝对值是 .

容易看出,两个互为相反数的数的绝对值 。如—5=+5=5。

练一练:1。已知| |=5,求 的值。

2、填空:

(1)+3的符号是_____,绝对值是_ _____;(2)—3的符号是_____,绝对值是______;

(3)— 的符号是____,绝对值是______;(4)10—5的符号是_____,绝对值是______?

3、填空:

(1)符号是+号,绝对值是7的数是________;(2)符号是—号,绝对值是7的数是________; (3)符号是—号,绝对值是0?35的 数是________;(4)符号是+号,绝对值是1 的数 是________;

4、(1)绝对值是 的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?

(3)有没有绝对值是—2的数?

3。理解:

若用a表示一个数,当a 是正数时可以表示成a>0,当a是负数时可以表示成a<0,这样,上面的绝对值的特点可用用符号语言可表示为:

(1) 如果a>0,那么a=a;

(2) 如果a<0,那么a=-a;

(3) 如果a=0,那么a =0。

4。 比较两个负数的大小

由于绝对值是表示数的点到原点的距离,则离原点越远的点表示的数的绝对值越大。负数的绝对值越大,表示 这个数的点就越靠左边,因此,两个负数比较,绝对值大的反而小。

练一练: 比较 和 的大小

七年级数学绝对值教案2

教学目标:

1、知识与技能:

(1)借助数轴理解相反数的概念,会求一个数的相反数。

(2)培养学生观察、猜想、验证等能力,初步形成数形结合的思想。

2、过程与方法:

在教师的指导下,让学生通过观察、比较,归纳出相反数的概念和性质。

重点、难点

1、重点:理解相反数的意义,会求一个数的相反数。

2、难点:对相反数意义的理解。

教学过程:

一、创设情景,导入新课

1、请两位同学背靠背,一个向左走5步,另一个向右走5步,如果向右走为正,向左、向右分别记作什么?(生答:+5、-5),+5与-5这样成对出现的数就是为们今天要学习的相反数。

二、合作交流,解读探究

1、(出示小黑板)

教师提出问题:上图中数轴上的点B和点D表示的数各是什么?有什么关系?

学生活动:分小组讨论,与同伴交流。

教师活动:请几位同学说出他们讨论的结果,指出点B表示+,点D表示-,它们只有符号不同,到原点的距离都是。

2、(板书):如果两个数只有符号不同,那么我们将其中一个数叫做另一个数的相反数,也称这两个数互为相反数。

0的相反数是0。

3、学生活动:

在数轴上,表示互为相反数的两个点有什么关系?

学生代表回答后,小结:在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点的距离相等。

4、练习填空:

3的相反数是;-6的相反数是;-(-3)=;-(-)=;

学生活动:在练习本上解答,并与同伴交流,师生共同订正。

归纳:化简多重符号时,一个正数前不管有多少个“+”号,都可全部省去不写;一个数前有偶数个“-”号,也可以把“-”号一起去掉;一个正数前面有奇数个“-”号,则化简后只保留一个“-”号。

三、应用迁移,巩固提高

1、课本P10第1题。

2、填空:

(1)xx的相反数是;(2)xx的相反数是;(3)xx的相反数是2/3。

3、如果一个数的相反数是它本身,则这个数是。

4、若α、β互为相反数,则α+β= 。

5、-(-4)是的相反数,-(-2)的相反数是。

6、化简下列各数的符号

-(-9)=; +(-)= ;

-=;-{-[+(-7)]}= 。

7、若-x=10,则x的`相反数在原点的侧。

8、若x的相反数是-3,则;若x的相反数是-,则。

四、总结反思

本节课学习了相反数的意义,并认识了相反数在数轴上的特征,数a的相反数是-a,0的相反数是0,在数轴上,表示互为相反数(零除外)的两个点,位于原点的两侧,并且到原点的距离相等。

五、课后作业

课本P13习题组第3、4题。

七年级数学《绝对值》教案3

一、教学目标

1.初步理解绝对值的意义,掌握求有理数的绝对值的方法,并会求有理数的绝对值.

2.利用绝对值解决?些简单的实际问题.

3.使学生初步了解数形结合的思想方法.

4.通过应用绝对值解决实际问题,培养学生浓厚的学习兴趣,体会绝对值的意义和作用,感受数学在生活中的价值.

二、教法设计

通过实体模型或问题实例创设学生参与情景,在自主看书寻找问题答案后探求绝对值的意义及应用.

三、教学重点和难点

重点:初步理解绝对值的意义,会求一个有理数的绝对值.

难点:对绝对值意义的初步理解.

四、课时安排

1课时

五、师生互动活动设计

自主、探究、合作、交流.

六、教学思路

(一)、导入

1.教师拿出准备好的数轴模型,让学生观察后摆放在讲台前,叫两个学生站在绳上标有点12、点6的位置,让其他学生观察度量后回答:这两个同学与原点的距离各是多少?

另外叫两个学生分别站在绳上标有点一6、点一12的位置,其他学生观察度量后回答:这两个同学与原点的距离各是多少?

(给学生充分的时间思考,相互讨论、探讨.)

或:创设问题情景

挂出画有数轴的磁性黑板,两只小狗分别站在数轴上原点的左、右两侧3个单位的点上,向它离开原点的距离各是多少?(激情引趣,导人新课)

2.概念的引述.

教师引导学生看书自学后,举例说明:什么是一个数的绝对值?如何表示一个数的绝对值?

(叫学生板书)

(学生在自学的基础上,可相互合作、探讨,教师参与学生的讨论,并进行个别指导.)

3.引导学生思考书中“想一想”:互为相反数的两个数的绝对值有什么关系?

(在学生充分思考后,教师要引导学生相互说,并叫5个学生上黑板举例说明这个关系.)

(二)、新知识运用

例1:求下列各数的绝对位:(小黑板示)

0、-、

教师示范一题的解题格式,其余题目由学生独立完成.(培养学生规范化解题的良好习惯)

四、知识拓展

师生互动,先要求学思考、解决,再在组内互相交流.

1.(1)在数轴上表示下列各数:

一1.5、一3、一1、一5.

(2)求出以上各数的绝对值,并比较它们的大小.

(3)你发现了什么?

(培养学生独立思考解决问题的习惯,学会发现问题,总结规律.)

2.如果=,那么

3.

4.字母a表示一个正数,-a表示什么?- a 一定是负数吗?

(字母表示数的意义,为下一章的代数式做准备.)

视学生掌握知识的实际增况开展自编题,编出的题目先在小组内互相交流,再在小组内选出一题在全班交流.

五、小结

1.知识点:

(1)绝对值的定义二

(2)一个数的绝对值与这个数的关系.

2.数学思想方法:数形结合的思想.(培养学生总结能力)

自我评价

本课设计体现的几个教学理念:

1.既注重学生的全面发展、又重视突出重点.在教学过程中不仅考虑使双基、能力和非智力教学目标的切实实现,而且突出了培养思维能力这个重点,着重培养学生思维的。准确性、深刻性、批判性、创新性等优秀品质.

2.突出了归纳思维方法和学生创新意识的培养.这主要是通过求绝对值的法则的学习过程和“知识拓展”中提出的问题而实现的.

3.学生的自主探索和教师的有效而及时的组织、引导与合作相结合.本课设计者根据初一学生的认和水平,既注重安排他们的自主探究活动,又及时地进行引导、讲解和帮助,这一教学理念贯穿本设计始终.

4.注重教学材料的呈现方式,采用磁性黑板的直观作用和多变而有趣的练习,激发学生的学习兴趣和参与教学活动的积极性,增强了教学的情境性.

5.本课设计者电教手段的应用没有得到体现,只适合硬件条件较差的学校或对新技术手段不熟的教师()使用.

17 103638
");