八上数学知识点总结(汇总5篇)

文秘 分享 时间:

八年级上册数学主要包括数与式、方程、不等式、函数、几何图形及其性质等内容,强调逻辑推理与实际应用。下面是阿拉网友整理编辑的八上数学知识点总结相关范文,供大家学习参考,喜欢就分享给朋友吧!

八上数学知识点总结

八上数学知识点总结 篇1

等腰三角形判定

中线

1、等腰三角形底边上的中线垂直底边,平分顶角;

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;

2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

角平分线

1、等腰三角形顶角平分线垂直平分底边;

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线

1、等腰三角形底边上的高平分顶角、平分底边;

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

2、有两条高相等的三角形是等腰三角形。

八上数学知识点总结 篇2

第十一章全等三角形

1、全等三角形的性质:全等三角形对应边相等、对应角相等。

2、全等三角形的判定:三边相等(SSS)、两边和它们的夹角相等(SAS)、两角和它们的夹边(ASA)、两角和其中一角的对边对应相等(AAS)、斜边和直角边相等的两直角三角形(HL)。

3、角平分线的性质:角平分线平分这个角,角平分线上的点到角两边的距离相等

4、角平分线推论:角的内部到角的两边的距离相等的点在叫的平分线上。

5、证明两三角形全等或利用它证明线段或角的相等的基本方法步骤:①、确定已知条件(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形、等所隐含的边角关系),②、回顾三角形判定,搞清我们还需要什么,③、正确地书写证明格式(顺序和对应关系从已知推导出要证明的问题)。

第十二章轴对称

1、如果一个图形沿某条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形;这条直线叫做对称轴。

2、轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。

3、角平分线上的点到角两边距离相等。

4、线段垂直平分线上的任意一点到线段两个端点的距离相等。

5、与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。

6、轴对称图形上对应线段相等、对应角相等。

7、画一图形关于某条直线的轴对称图形的步骤:找到关键点,画出关键点的对应点,按照原图顺序依次连接各点。

8、点(x,y)关于x轴对称的点的坐标为(x,—y)

点(x,y)关于y轴对称的点的坐标为(—x,y)

点(x,y)关于原点轴对称的点的坐标为(—x,—y)

9、等腰三角形的性质:等腰三角形的两个底角相等,(等边对等角)

等腰三角形的顶角平分线、底边上的高、底边上的中线互相重合,简称为“三线合一”。

10、等腰三角形的判定:等角对等边。

11、等边三角形的三个内角相等,等于60°,

12、等边三角形的判定:三个角都相等的三角形是等腰三角形。

有一个角是60°的等腰三角形是等边三角形。

有两个角是60°的三角形是等边三角形。

13、直角三角形中,30°角所对的直角边等于斜边的一半。

14、直角三角形斜边上的中线等于斜边的一半

第十三章实数

※算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么正数x叫做a的算术平方根,记作。0的算术平方根为0;从定义可知,只有当a≥0时,a才有算术平方根。

※平方根:一般地,如果一个数x的平方根等于a,即x2=a,那么数x就叫做a的平方根。

※正数有两个平方根(一正一负)它们互为相反数;0只有一个平方根,就是它本身;负数没有平方根。

※正数的立方根是正数;0的立方根是0;负数的立方根是负数。

数a的相反数是—a,一个正实数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0

第十四章一次函数

1、画函数图象的一般步骤:一、列表(一次函数只用列出两个点即可,其他函数一般需要列出5个以上的点,所列点是自变量与其对应的函数值),二、描点(在直角坐标系中,以自变量的值为横坐标,相应函数的值为纵坐标,描出表格中的个点,一般画一次函数只用两点),三、连线(依次用平滑曲线连接各点)。

2、根据题意写出函数解析式:关键找到函数与自变量之间的等量关系,列出等式,既函数解析式。

3、若两个变量x,y间的关系式可以表示成y=kx+b(k≠0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。特别地,当b=0时,称y是x的正比例函数。

4、正比列函数一般式:y=kx(k≠0),其图象是经过原点(0,0)的一条直线。

5、正比列函数y=kx(k≠0)的图象是一条经过原点的直线,当k>0时,直线y=kx经过第一、三象限,y随x的增大而增大,当k<0时,直线y=kx经过第二、四象限,y随x的增大而减小,在一次函数y=kx+b中:k="">0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

6、已知两点坐标求函数解析式(待定系数法求函数解析式):

把两点带入函数一般式列出方程组

求出待定系数

把待定系数值再带入函数一般式,得到函数解析式

7、会从函数图象上找到一元一次方程的解(既与x轴的交点坐标横坐标值),一元一次不等式的解集,二元一次方程组的解(既两函数直线交点坐标值)

第十五章整式的乘除与因式分解

1、同底数幂的乘法

※同底数幂的乘法法则:(m,n都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:

①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a可以是一个具体的数字式字母,也可以是一个单项或多项式;

②指数是1时,不要误以为没有指数;

③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;

④当三个或三个以上同底数幂相乘时,法则可推广为(其中m、n、p均为正数);

⑤公式还可以逆用:(m、n均为正整数)

2、幂的乘方与积的乘方

※1、幂的乘方法则:(m,n都是正数)是幂的乘法法则为基础推导出来的,但两者不能混淆。

※2、底数有负号时,运算时要注意,底数是a与(—a)时不是同底,但可以利用乘方法则化成同底,如将(—a)3化成—a3。

※3、底数有时形式不同,但可以化成相同。

※4、要注意区别(ab)n与(a+b)n意义是不同的,不要误以为(a+b)n=an+bn(a、b均不为零)。

※5、积的乘方法则:积的乘方,等于把积每一个因式分别乘方,再把所得的幂相乘,即(n为正整数)。

※6、幂的乘方与积乘方法则均可逆向运用。

3、整式的乘法

※(1)单项式乘法法则:单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,连同它的指数作为积的一个因式。

单项式乘法法则在运用时要注意以下几点:

①积的系数等于各因式系数积,先确定符号,再计算绝对值。这时容易出现的错误的是,将系数相乘与指数相加混淆;

②相同字母相乘,运用同底数的乘法法则;

③只在一个单项式里含有的字母,要连同它的指数作为积的一个因式;

④单项式乘法法则对于三个以上的单项式相乘同样适用;

⑤单项式乘以单项式,结果仍是一个单项式。

※(2)单项式与多项式相乘

单项式乘以多项式,是通过乘法对加法的分配律,把它转化为单项式乘以单项式,即单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

单项式与多项式相乘时要注意以下几点:

①单项式与多项式相乘,积是一个多项式,其项数与多项式的项数相同;

②运算时要注意积的符号,多项式的每一项都包括它前面的符号;

③在混合运算时,要注意运算顺序。

※(3)多项式与多项式相乘

多项式与多项式相乘,先用一个多项式中的每一项乘以另一个多项式的每一项,再把所得的积相加。

多项式与多项式相乘时要注意以下几点:

①多项式与多项式相乘要防止漏项,检查的方法是:在没有合并同类项之前,积的项数应等于原两个多项式项数的`积;

②多项式相乘的结果应注意合并同类项;

③对含有同一个字母的一次项系数是1的两个一次二项式相乘,其二次项系数为1,一次项系数等于两个因式中常数项的和,常数项是两个因式中常数项的积。对于一次项系数不为1的两个一次二项式(mx+a)和(nx+b)相乘可以得

4、平方差公式

¤1、平方差公式:两数和与这两数差的积,等于它们的平方差,

※即。

¤其结构特征是:

①公式左边是两个二项式相乘,两个二项式中第一项相同,第二项互为相反数;

②公式右边是两项的平方差,即相同项的平方与相反项的平方之差。

5、完全平方公式

¤1、完全平方公式:两数和(或差)的平方,等于它们的平方和,加上(或减去)它们的积的2倍。

¤即;

¤口决:首平方,尾平方,2倍乘积在中央;

¤2、结构特征:

①公式左边是二项式的完全平方;

②公式右边共有三项,是二项式中二项的平方和,再加上或减去这两项乘积的2倍。

¤3、在运用完全平方公式时,要注意公式右边中间项的符号,以及避免出现这样的错误。

添括号法则:添正不变号,添负各项变号,去括号法则同样

6、同底数幂的除法

※1、同底数幂的除法法则:同底数幂相除,底数不变,指数相减,即(a≠0,m、n都是正数,且m>n)。

※2、在应用时需要注意以下几点:

①法则使用的前提条件是“同底数幂相除”而且0不能做除数,所以法则中a≠0。

②任何不等于0的数的0次幂等于1,即,如,(—=1),则00无意义。

③任何不等于0的数的—p次幂(p是正整数),等于这个数的p的次幂的倒数,即(a≠0,p是正整数),而0—1,0—3都是无意义的;当a>0时,a—p的值一定是正的;当a<0时,a—p的值可能是正也可能是负的,如,

④运算要注意运算顺序。

7、整式的除法

¤1、单项式除法单项式

单项式相除,把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式;

¤2、多项式除以单项式

多项式除以单项式,先把这个多项式的每一项除以单项式,再把所得的商相加,其特点是把多项式除以单项式转化成单项式除以单项式,所得商的项数与原多项式的项数相同,另外还要特别注意符号。

8、分解因式

※1、把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

※2、因式分解与整式乘法是互逆关系。

因式分解与整式乘法的区别和联系:

(1)整式乘法是把几个整式相乘,化为一个多项式;

(2)因式分解是把一个多项式化为几个因式相乘。

八上数学知识点总结 篇3

1)分式混合运算法则:

分式四则运算,顺序乘除加减,乘除同级运算,除法符号须变(乘);

乘法进行化简,因式分解在先,分子分母相约,然后再行运算;

加减分母需同,分母化积关键;找出最简公分母,通分不是很难;

变号必须两处,结果要求最简.

2)分式方程的增根问题

(1)增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知

数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现

不适合原方程的根---增根;

(2)验根:因为解分式方程可能出现增根,所以解分式方程必须验根.

列分式方程基本步骤

①审-仔细审题,找出等量关系。

②设-合理设未知数。

③列-根据等量关系列出方程(组)。

④解-解出方程(组)。注意检验

⑤答-答题。

3)解分式方程的基本步骤

⑴去分母,把方程两边同乘以各分母的最简公分母。(产生增根的过程)

⑵解整式方程,得到整式方程的解。

⑶检验,把所得的整式方程的解代入最简公分母中:

如果最简公分母为0,则原方程无解,这个未知数的值是原方程的增根;如果最简公分母不为0,则是原方程的解。

产生增根的条件是:①是得到的整式方程的解;②代入最简公分母后值为0。

4)分式的基本性质:

分式的分子和分母都乘以(或除以)同一个不等于零的整式,分式的值不变。

即,(C≠0),其中A、B、C均为整式。分式的符号法则:一个分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。

约分:分数可以约分,分式与分数类似,也可以约分,根据分式的基本性质把一个分式的分子与分母的公因式约去,这种变形称为分式的约分。

5)分式的约分步骤:

(1)如果分式的分子和分母都是单项式或者是几个因式乘积的形式,将它们的公因式约去;

(2)分式的分子和分母都是多项式,将分子和分母分别分解因式,再将公因式约去。

6)分式的运算:

1.分式的加减法法则:

(1)同分母的分式相加减,分母不变,把分子相加;

(2)异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法则进行计算。

2.分式的乘除法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘。

3.分式的混合运算顺序,先算乘方,再算乘除,最后算加减,有括号先算括号里面的。

4.对于分式化简求值的题型要注意解题格式,要先化简,再代人字母的值求值。

约分的方法和步骤包括:

(1)当分子、分母是单项式时,公因式是相同因式的最低次幂与系数的公约数的积;

(2)当分子、分母是多项式时,应先将多项式分解因式,约去公因式。

7)通分:根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通。

分式通分:将几个异分母的分式化成同分母的分式,这种变形叫分式的通分。

(1)当几个分式的分母是单项式时,各分式的最简公分母是系数的最小公倍数、相同字母的次幂的所有不同字母的积;

(2)如果各分母都是多项式,应先把各个分母按某一字母降幂或升幂排列,再分解因式,找出最简公分母;

(3)通分后的各分式的分母相同,通分后的各分式分别与原来的分式相等;

(4)通分和约分是两种截然不同的变形.约分是针对一个分式而言,通分是针对多个分式而言;约分是将一个分式化简,而通分是将一个分式化繁。

8)注意:

(1)分式的约分和通分都是依据分式的基本性质;

(2)分式的变号法则:分式的分子、分母和分式本身的符号,改变其中的任何两个,分式的值不变。

(3)约分时,分子与分母不是乘积形式,不能约分.

3.求最简公分母的方法是:

(1)将各个分母分解因式;

(2)找各分母系数的最小公倍数;

(3)找出各分母中不同的因式,相同因式中取次数的,满足(2)(3)的因式之积即为各分式的最简公分母(求最简公分母在分式的加减运算和解分式方程时起非常重要的作用)。

运算符号

如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√ ̄),对数(log,lg,ln,lb,lim),比(:),绝对值符号| |,微分(d),积分(∫),闭合曲面(曲线)积分(∮)等。

基本函数有哪些

正弦:sine余弦:cosine(简写cos)

正切:tangent(简写tan)

余切:cotangent(简写cot)

正割:secant(简写sec)

余割:cosecant(简写csc)

八上数学知识点总结 篇4

第十一章三角形

一、知识框架:

知识概念:

1、三角形:由不在同一直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

2、三边关系:三角形任意两边的和大于第三边,任意两边的差小于第三边。

3、高:从三角形的一个顶点向它的对边所在直线作垂线,顶点和垂足间的线段叫做三角形的高。

4、中线:在三角形中,连接一个顶点和它对边中点的线段叫做三角形的中线。

5、角平分线:三角形的一个内角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线。

6、三角形的稳定性:三角形的形状是固定的,三角形的这个性质叫三角形的稳定性。

7、多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。

8、多边形的内角:多边形相邻两边组成的角叫做它的内角。

9、多边形的外角:多边形的一边与它的邻边的延长线组成的角叫做多边形的外角。

10、多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线。

11、正多边形:在平面内,各个角都相等,各条边都相等的多边形叫正多边形。

12、平面镶嵌:用一些不重叠摆放的多边形把平面的一部分完全覆盖,叫做用多边形覆盖平面,

13、公式与性质:

⑴三角形的内角和:三角形的内角和为180°

⑵三角形外角的性质:

性质1:三角形的一个外角等于和它不相邻的两个内角的和。

性质2:三角形的一个外角大于任何一个和它不相邻的内角。

⑶多边形内角和公式:边形的内角和等于·180°

⑷多边形的外角和:多边形的外角和为360°。

⑸多边形对角线的条数:

①从边形的一个顶点出发可以引条对角线,把多边形分成个三角形。

②边形共有条对角线。

第十二章全等三角形

一、知识框架:

二、知识概念:

1、基本定义:

⑴全等形:能够完全重合的两个图形叫做全等形。

⑵全等三角形:能够完全重合的两个三角形叫做全等三角形。

⑶对应顶点:全等三角形中互相重合的顶点叫做对应顶点。

⑷对应边:全等三角形中互相重合的边叫做对应边。

⑸对应角:全等三角形中互相重合的角叫做对应角。

2、基本性质:

⑴三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性。

⑵全等三角形的性质:全等三角形的对应边相等,对应角相等。

3、全等三角形的判定定理:

⑴边边边:三边对应相等的两个三角形全等。

⑵边角边:两边和它们的夹角对应相等的两个三角形全等。

⑶角边角:两角和它们的夹边对应相等的两个三角形全等。

⑷角角边:两角和其中一个角的对边对应相等的两个三角形全等。

⑸斜边、直角边:斜边和一条直角边对应相等的两个直角三角形全等。

4、角平分线:

⑴画法:

⑵性质定理:角平分线上的点到角的两边的距离相等。

⑶性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上。

5、证明的基本方法:

⑴明确命题中的已知和求证。(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)

⑵根据题意,画出图形,并用数字符号表示已知和求证。

⑶经过分析,找出由已知推出求证的途径,写出证明过程。

第十三章轴对称

一、知识框架:

二、知识概念:

1、基本概念:

⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。

⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。

⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。

⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。

⑸等边三角形:三条边都相等的三角形叫做等边三角形。

2、基本性质:

⑴对称的性质:

①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。

②对称的图形都全等。

⑵线段垂直平分线的性质:

①线段垂直平分线上的点与这条线段两个端点的距离相等。

②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。

⑶关于坐标轴对称的点的坐标性质

八上数学知识点总结 篇5

中线

1、等腰三角形底边上的中线垂直底边,平分顶角;

2、等腰三角形两腰上的中线相等,并且它们的交点与底边两端点距离相等。

1、两边上中线相等的三角形是等腰三角形;

2、如果一个三角形的一边中线垂直这条边(平分这个边的对角),那么这个三角形是等腰三角形

角平分线

1、等腰三角形顶角平分线垂直平分底边;

2、等腰三角形两底角平分线相等,并且它们的交点到底边两端点的距离相等。

1、如果三角形的顶角平分线垂直于这个角的对边(平分对边),那么这个三角形是等腰三角形;

2、三角形中两个角的平分线相等,那么这个三角形是等腰三角形。

高线

1、等腰三角形底边上的高平分顶角、平分底边;

2、等腰三角形两腰上的高相等,并且它们的交点和底边两端点距离相等。

1、如果一个三角形一边上的高平分这条边(平分这条边的对角),那么这个三角形是等腰三角形;

2、有两条高相等的三角形是等腰三角形。

35 3720115
");