高中数学一次函数公式总结实用5篇

网友 分享 时间:

【导言】此例“高中数学一次函数公式总结实用5篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

初中数学一次函数知识点1

一次函数的定义一般地,形如y=kx+b(k,b是常数,且k≠0)的函数,叫做一次函数,其中x是自变量。当b=0时,一次函数y=kx,又叫做正比例函数。

1.一次函数的解析式的形式是y=kx+b,要判断一个函数是否是一次函数,就是判断是否能化成以上形式。

2.当b=0,k≠0时,y=kx仍是一次函数。

3.当k=0,b≠0时,它不是一次函数。

4.正比例函数是一次函数的特例,一次函数包括正比例函数。

2一次函数的图像及性质1.在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。

2.一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)。

3.正比例函数的图像总是过原点。

,b与函数图像所在象限的关系:

当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。

当k>0,b>0时,直线通过一、二、三象限;

当k>0,b<0时,直线通过一、三、四象限;

当k<0,b>0时,直线通过一、二、四象限;

当k<0,b<0时,直线通过二、三、四象限;

当b=0时,直线通过原点O(0,0)表示的是正比例函数的图像。

这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。

3一次函数的图象与性质的口诀一次函数是直线,图象经过三象限;

正比例函数更简单,经过原点一直线;

两个系数k与b,作用之大莫小看,

k是斜率定夹角,b与y轴来相见,

k为正来右上斜,x增减y增减;

k为负来左下展,变化规律正相反;

k的绝对值越大,线离横轴就越远。

读书破万卷,下笔如有神。以上这5篇高中数学一次函数公式总结是来自于山草香的一次函数的相关范文,希望能有给予您一定的启发。

高中数学一次函数公式总结2

一、定义与定义式:

自变量x和因变量y有如下关系:

y=kx+b

则此时称y是x的一次函数。

特别地,当b=0时,y是x的正比例函数。

即:y=kx(k为常数,k≠0)

二、一次函数的性质:

的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k≠0)的变化值与对应的x的变化值成正比例,比值为k

即:y=kx+b(k≠0)(k不等于0,且k,b为常数)

2.当x=0时,b为函数在y轴上的交点,坐标为(0,b).

当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)

为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

5.函数图象性质:当k相同,且b不相等,图像平行;

当k不同,且b相等,图象相交于Y轴;

当k互为负倒数时,两直线垂直;

6.平移时:上加下减在末尾,左加右减在中间(k不等于0,且k,b为常数)

2.当x=0时,b为函数在y轴上的交点,坐标为(0,b).

当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)

为一次函数y=kx+b的斜率,k=tanΘ(角Θ为一次函数图象与x轴正方向夹角,Θ≠90°)

形、取、象、交、减。

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

5.函数图象性质:当k相同,且b不相等,图像平行;

当k不同,且b相等,图象相交于Y轴;

当k互为负倒数时,两直线垂直;

6.平移时:上加下减在末尾,左加右减在中间

三、一次函数的图像及性质:

1.作法与图形:通过如下3个步骤:

(1)列表:每确定自变量x的一个值,求出因变量y的一个值,并列表,

(2)描点:一般取两个点,根据“两点确定一条直线”的道理;

(3)连线:可以作出一次函数的图象——一条直线。因此,作一次函数的图象只需知道2点,并连成直线即可。(通常找函数图象与x轴和y轴的交点分别是-与(-b/k,0),0与b)

2.性质:(1)在一次函数上的任意一点P(x,y),都满足等式:y=kx+b(k≠0)。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图象都是过原点。

3.函数不是数,它是指某一变化过程中两个变量之间的关系。

,b与函数图象所在象限:

y=kx时(即b等于0,y与x成正比,此时的图象是一条经过原点的直线)

当k>0时,直线必通过一、三象限,y随x的增大而增大;

当k<0时,直线必通过二、四象限,y随x的增大而减小。

y=kx+b(k,b为常数,k≠0)时:

当 k>0,b>0, 这时此函数的图象经过一,二,三象限;

当 k>0,b<0, 这时此函数的图象经过一,三,四象限;

当 k<0,b>0, 这时此函数的图象经过一,二,四象限;

当 k<0,b<0, 这时此函数的图象经过二,三,四象限。

当b>0时,直线必通过一、二象限;

当b<0时,直线必通过三、四象限。

特别地,当b=0时,直线通过原点O(0,0)表示的是正比例函数的图象。

这时,当k>0时,直线只通过一、三象限,不会通过二、四象限。当k<0时,直线只通过二、四象限,不会通过一、三象限。

4、特殊位置关系

当平面直角坐标系中两直线平行时,其函数解析式中K值(即一次项系数)相等。

当平面直角坐标系中两直线垂直时,其函数解析式中K值互为负倒数(即两个K值的乘积为-1.[1]

5.直线y=kx+b的图象和性质与k、b的关系如下表所示:

k>0,b>0:经过第一、二、三象限

k>0,b<0:经过第一、三、四象限

k>0,b=0:经过第一、三象限(经过原点)

结论:k>0时,图象从左到右上升,y随x的增大而增大。

k<0b>0:经过第一、二、四象限

k<0,b<0:经过第二、三、四象限

k<0,b=0:经过第二、四象限(经过原点)

结论:k<0时,图象从左到右下降,y随x的增大而减小。

6.将函数向上平移n格,函数解析式为y=kx+b+n,将函数向下平移n格,函数解析式为y=kx+b-n,将函数向左平移n格,函数解析式为y=k(x+n)+b,将函数向右平移n格,函数解析式为y=k(x-n)+b.

初中数学一次函数常用公式3

正切函数要领:对于任意一个实数x,都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正切值tanx与它对应,按照这个对应法则建立的函数称为正切函数。

正切函数

正切函数是三角函数的一种

英文:tangent

简写:tan

中文:正切

概念

把∠A的对边与∠A的邻边的比叫做∠A的正切,

记作 tan=∠A的对边/∠A的邻边=a/b

锐角三角函数

tan15°=2-√3

tan30°=√3/3

tan45°=1

tan60°=√3

形式是f(x)=tanx

它与正弦函数的最大区别是定义域的不连续性。

正切函数的性质

1、定义域:{x|x≠(π/2)+kπ,k∈Z}

2、值域:实数集R

3、奇偶性:奇函数

4、单调性:在区间(-π/2+kπ,π/2+kπ),k∈Z上都是增函数

5、周期性:最小正周期π(可用π/|ω|来求)

6、最值:无最大值与最小值

7、零点:kπ, k∈Z

8、对称性:

轴对称:无对称轴

中心对称:关于点(kπ/2,0)对称 k∈Z

实际上,正切曲线除了原点是它的对称中心以外,所有x=(n/2)π点都是它的对称中心。

正切函数诱导公式

tan(2π+α)=tanα

tan(-α) =-tanα

tan(2π-α)=-tanα

tan(π-α) =-tanα

tan(π+α) =tanα

温馨提示:正切函数是区别于正弦函数的又一三角函数。

一次函数表达方法4

一次函数是一条直线

y=kx(o,0)(1,k)

y=kx+b(0,b)与y轴的交点

1、解析式法

用含自变量x的式子表示函数的方法。

2、列表法

把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

3、图像法

用图象来表示函数关系的方法叫做图象法。

八年级数学之一次函数的图像知识点5

作法

(1)列表:表中给出一些自变量的值及其对应的函数值。

(2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。

一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。

正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。

(3)连线: 按照横坐标由小到大的顺序把描出的各点用平滑曲线连接起来。

性质

(1)在一次函数图像上的任取一点P(x,y),则都满足等式:y=kx+b(k≠0)。

(2)一次函数与y轴交点的坐标总是(0,b),与x轴总交于(-b/k,0)。正比例函数的图像都经过原点。

k,b决定函数图像的位置:

y=kx时,y与x成正比例:

当k>0时,直线必通过第一、三象限,y随x的增大而增大;

当k<0时,直线必通过第二、四象限,y随x的增大而减小。

y=kx+b时:

当 k>0,b>0, 这时此函数的图象经过第一、二、三象限;

当 k>0,b<0,这时此函数的图象经过第一、三、四象限;

当 k<0,b>0,这时此函数的图象经过第一、二、四象限;

当 k<0,b<0,这时此函数的图象经过第二、三、四象限。

当b>0时,直线必通过第一、三象限;

当b<0时,直线必通过第二、四象限。

特别地,当b=0时,直线经过原点O(0,0)。

这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

平面直角坐标系:

在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合

三个规定:

①正方向的规定横轴取向右为正方向,纵轴取向上为正方向

②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

平面直角坐标系的构成

在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。通常,两条数轴分别置于水平位置与铅直位置,取向右与向上的方向分别为两条数轴的正方向。水平的数轴叫做X轴或横轴,铅直的数轴叫做Y轴或纵轴,X轴或Y轴统称为坐标轴,它们的公共原点O称为直角坐标系的原点。

点的坐标的性质

建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标。反过来,对于任何一个坐标,我们可以在坐标平面内确定它所表示的一个点。

对于平面内任意一点C,过点C分别向X轴、Y轴作垂线,垂足在X轴、Y轴上的对应点a,b分别叫做点C的横坐标、纵坐标,有序实数对(a,b)叫做点C的坐标。

一个点在不同的象限或坐标轴上,点的坐标不一样。

因式分解的一般步骤

如果多项式有公因式就先提公因式,没有公因式的多项式就考虑运用公式法;若是四项或四项以上的多项式,通常采用分组分解法,最后运用十字相乘法分解因式。因此,可以概括为:“一提”、“二套”、“三分组”、“四十字”。

注意:因式分解一定要分解到每一个因式都不能再分解为止,否则就是不完全的因式分解,若题目没有明确指出在哪个范围内因式分解,应该是指在有理数范围内因式分解,因此分解因式的结果,必须是几个整式的积的形式。

因式分解定义:

把一个多项式化成几个整式的积的形式的变形叫把这个多项式因式分解。

因式分解要素:

①结果必须是整式②结果必须是积的形式③结果是等式④

因式分解与整式乘法的关系:m(a+b+c)

公因式:

一个多项式每项都含有的公共的因式,叫做这个多项式各项的公因式。

公因式确定方法:

①系数是整数时取各项最大公约数。②相同字母取最低次幂③系数最大公约数与相同字母取最低次幂的积就是这个多项式各项的公因式。

提取公因式步骤:

①确定公因式。②确定商式③公因式与商式写成积的形式。

分解因式注意:

①不准丢字母

②不准丢常数项注意查项数

③双重括号化成单括号

④结果按数单字母单项式多项式顺序排列

⑤相同因式写成幂的形式

⑥首项负号放括号外

⑦括号内同类项合并。

35 666315
");