高中数学立体几何知识点总结精选5篇
【导言】此例“高中数学立体几何知识点总结精选5篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
数学立体几何知识点【第一篇】
1.空间的距离问题
主要是求空间两点之间、点到直线、点到平面、两条异面直线之间(限于给出公垂线段的)、平面和它的平行直线、以及两个平行平面之间的距离(在会求距离问题之前,需要明确其位置关系,详见 空间点、直线、平面的位置关系 ). 求距离的一般方法和步骤是:一作出表示距离的线段;二证明它就是所要求的距离;三计算其值.此外,我们还常用体积法求点到平面的距离.
2.面积和体积
柱、锥、台、球及其简单组合体等内容是立体几何的基础,也是研究空间问题的基本载体,是高考考查的重要方面,在学习中应注意这些几何体的概念、性质以及对面积、体积公式的理解和运用。
3.三视图
几何体的三视图和直观图是认知几何体的基本内容,在高考中,对这两个知识点的考查集中在两个方面,一是考查三视图与直观图的基本知识和基本的视图能力,二是根据三视图与直观图进行简单的计算,常以选择题、填空题的形式出现。
数学立体几何知识点【第二篇】
立体几何初步
1、柱、锥、台、球的结构特征
(1)棱柱:
定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。
分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。
表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱
几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。
(2)棱锥
定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体
分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等
表示:用各顶点字母,如五棱锥
几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。
(3)棱台:
定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分
分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等
表示:用各顶点字母,如五棱台
几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点
(4)圆柱:
定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体
几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。
(5)圆锥:
定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体
几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。
(6)圆台:
定义:用一个平行于圆锥底面的平面去截圆锥,截面和底面之间的部分
几何特征:①上下底面是两个圆;②侧面母线交于原圆锥的顶点;③侧面展开图是一个弓形。
(7)球体:
定义:以半圆的直径所在直线为旋转轴,半圆面旋转一周形成的几何体
几何特征:①球的截面是圆;②球面上任意一点到球心的距离等于半径。
2、空间几何体的三视图
定义三视图:正视图(光线从几何体的前面向后面正投影);侧视图(从左向右)、俯视图(从上向下)
注:正视图反映了物体上下、左右的位置关系,即反映了物体的高度和长度;
俯视图反映了物体左右、前后的位置关系,即反映了物体的长度和宽度;
侧视图反映了物体上下、前后的位置关系,即反映了物体的高度和宽度。
3、空间几何体的直观图斜二测画法
斜二测画法特点:①原来与x轴平行的线段仍然与x平行且长度不变;
②原来与y轴平行的线段仍然与y平行,长度为原来的一半。
数学立体几何知识点【第三篇】
名称 符号 面积S和体积V
1、正方体 a-边长 S=6a2 ; V=a3
2、长方体a-长;b-宽 ;c-高; S=2(ab+ac+bc) ; V=abc
3、棱柱S-底面积;h-高;V=Sh
4、棱锥 S-底面积h-高 ;V=Sh/3
5、棱台S1和S2-上、下底面积h-高 ;V=h[S1+S2+(S1S1)1/2]/3
6、拟柱体S1-上底面积 ;S2-下底面积 ;S0-中截面积 ;h-高
V=h(S1+S2+4S0)/6
7、圆柱 r-底半径;h-高;C底面周长;S底底面积;S侧侧面积
S表表面积
C=2r
S底=r2
S侧=Ch
S表=Ch+2S底
V=S底h =r2h
8、空心圆柱 R-外圆半径;r-内圆半径;h-高
V=h(R2-r2)
9、直圆锥r-底半径;h-高 V=r2h/3
10、圆台r-上底半径R-下底半径h-高
V=h(R2+Rr+r2)/3
11、球 r-半径 ;d-直径 V=4/3d2/6
12、球缺 h-球缺高;r-球半径;a-球缺底半径
V=h(3a2+h2)/6
=h2(3r-h)/3
a2=h(2r-h)
13、球台r1和r2-球台上、下底半径;h-高
V=h[3(r12+r22)+h2]/6
14、圆环体R-环体半径;D-环体直径;r-环体截面半径;d-环体截面直径 V=22Rr2=2Dd2/4
15、桶状体D-桶腹直径;d-桶底直径;h-桶高
V=h(2D2+d2)/12
(母线是圆弧形,圆心是桶的中心)
V=h(2D2+Dd+3d2/4)/15
(母线是抛物线形)
数学立体几何知识点【第四篇】
1.有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决平行与垂直的有关问题着手,通过较为基本问题,熟悉公(山草香☆)理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律--充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。
2.判定两个平面平行的方法:
(1)根据定义--证明两平面没有公共点;
(2)判定定理--证明一个平面内的两条相交直线都平行于另一个平面;
(3)证明两平面同垂直于一条直线。
3.两个平面平行的主要性质:
⑴由定义知:两平行平面没有公共点。
⑵由定义推得:两个平面平行,其中一个平面内的直线必平行于另一个平面。
⑶两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那
么它们的交线平行。
⑷一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。
⑸夹在两个平行平面间的平行线段相等。
⑹经过平面外一点只有一个平面和已知平面平行。
以上性质⑵、⑷、⑸、⑹在课文中虽未直接列为性质定理,但在解题过程中均可直接作为性质定理引用。
数学立体几何知识点【第五篇】
点线面三位一体,柱锥台球为代表。距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。公理性质三垂线,解决问题一大片。
上一篇:可行性报告【参考4篇】
下一篇:项目招标公告【推荐4篇】