研究员的数据分析工作总结范文专业【汇集10篇】

大美丽 分享 时间:

【阅览】由阿拉题库网友精心整理编辑的“研究员的数据分析工作总结范文专业【汇集10篇】”优秀范例,以便供您学习参考之用,“轻松办公、远离加班熬夜”,希望下面内容对您有所帮助。喜欢就下载吧!

研究员的数据分析工作总结(专业21篇)【第一篇】

期末考试考的比较差,数108语105外106地83政59历65生80,我认为问题出在以下几个方面:

语文*时阅读理解没注意方法。在做阅读理解时,我不知从何处下手,找不准要点。这是一个很严重的问题。阅读理解是语文考试中比较关键的环节,也是很让人头疼的环节。语文中的很多写作方法我都很不了解,导致考到一些写作手法时只能瞎猜。我以后一定要多注意语文常识的积累。

在做数学问题时很不注意步骤。我在做题时的主要问题不是不会做,而是有时会跳步或者少写答。这个问题只要注意我相信就会很快地改掉。我在以后的做题中注意每一步的依据,在考试中细心验算,就会避免这个错误。

英语,还是在一些题上出现了马虎的现象;由于*时积累的单词和句型不够多,考试丢了不少分。

在政治和历史学科方面,由于没能正确认识这两科的重要性,*时学习态度不端正,知识上欠了很多债,以至于考出了惨不忍睹的分数。

总而言之,今后的学习计划应该和上学期时不同。因此我要改变学习方法。为了改进学习方法,我给自己订了一个学习计划:

(1)做好课前预习。也就是要挤出时间,把老师还没有讲过的内容先看一遍。尤其是语文课,要先把生字认会,把课文读熟;对课文要能分清层次,说出段意,正确理解课文内容。

(2)上课要积极发言。对于没有听懂的问题,要敢于举手提问。

(3)每天的家庭作业,做完后先让家长检查一遍,把做错了的和不会做的,让家长讲一讲,把以前做错了的题目,经常拿出来看一看,复习复习。

(4)对政治和历史两门学科的重要性要足够重视,端正学习态度,及时还清过去欠下的知识债务。

(5)要多读一些课外书。每天中午吃完饭,看半个小时课外书;每天晚上做完作业,只要有时间,再看几篇作文。

(6)课外学习不放松。能够利用星期天和节假日,到少年宫去学习作文、奥数、英语和书法,按时完成老师布置的作业,使各门功课都取得了好的成绩。

研究员的数据分析工作总结(专业21篇)【第二篇】

而数据分析也越来越受到领导层的重视,借助报表告诉用户什么已经发生了,借助olap和可视化工具等分析工具告诉用户为什么发生了,通过dashboard监控告诉用户现在在发生什么,通过预报告诉用户什么可能会发生。数据分析会从海量数据中提取、挖掘对业务发展有价值的、潜在的知识,找出趋势,为决策层的提供有力依据,为产品或服务发展方向起到积极作用,有力推动企业内部的科学化、信息化管理。

我们举两个通过数据分析获得成功的例子:

(2)hitwise发布会上,亚太区负责人john举例说明:亚马逊30%的销售是来自其系统自动的产品推荐,通过客户分类,测试统计,行为建模,投放优化四步,运营客户的行为数据带来竞争优势。

然而,现实却是另一种情况。我们来看一个来自微博上的信息:在美国目前面临14万~19万具有数据分析和管理能力的专业人员,以及150万具有理解和决策能力(基于对海量数据的研究)的管理人员和分析人员的人才短缺。而在中国,受过专业训练并有经验的数据分析人才,未来三年,分析能力人才供需缺口将逐渐放大,高级分析人才难寻。也就是说,数据分析的需求在不断增长,然而合格的为企业做分析决策的数据分析师却寥寥无几。好多人想做数据分析却不知道如何入手,要么不懂得如何清洗数据,直接把数据拿来就用;要么乱套模型,分析的头头是道,其实完全不是那么回事。按俗话说就是:见过猪跑,没吃过猪肉。

为此,我对自己的规划如下:

第一步:掌握基本的`数据分析知识(比如统计,概率,数据挖掘基础理论,运筹学等),掌握基本的数据分析软件(比如,vba,matlab,spss,sql等等),掌握基本的商业经济常识(比如宏微观经济学,营销理论,投资基础知识,战略与风险管理等等)。这些基础知识,在学校里尽量的学习,而且我来到了和君商学院,这样我可以在商业分析、经济分析上面领悟到一些东西,增强我的数据分析能力。

第二步:参与各种实习。研一开始我当时虽然有课,不过很幸运的找到一份一周只需去一两天的兼职,内容是为三星做竞争对手分析,当然分析框架是leader给定了,我只是做整合资料和往ppt里填充的内容的工作,不过通过兼职,我接触到了咨询行业,也向正式员工学习了很多商业分析、思考逻辑之类的东西。之后去西门子,做和vba的事情,虽然做的事情与数据分析无关,不过在公司经常用vba做一些自动化处理工作,为自己的数据分析工具打好了基础。再之后去了易车,在那里兼职了一个多月,参与了大众汽车销量数据短期预测的项目,一个小项目下来,数据分析的方法流程掌握了不少,也了解了企业是如何用一些时间序列模型去参与预测的,如何选取某个拟合曲线作为预测值。现在,我来到新的地方实习,也非常幸运的参加了一个央企的码头堆场优化系统设计,其实也算数据分析的一种吧,通过码头的数据实施调度,通过码头的数据进行决策,最后写成一个可操作的自动化系统。而这个项目,最重要的就是业务流程的把握,我也参与项目最初的需求调研,和制定工作任务说明书sow,体会颇多。

第三步:第一份工作,预计3-5年。我估计会选择咨询公司或者it公司吧,主要是做数据分析这块比较强的公司,比如fico,埃森哲,高沃,瑞尼尔,ibm,ac等等。通过第一份工作去把自己的知识打得扎实些,学会在实际中应用所学,学会数据分析的流程方法,让自己成长起来。

研究员的数据分析工作总结(专业21篇)【第三篇】

虽然这个工作的人还不能称作数据分析师,但是往往作这样工作的人还都自称是数据分析师,这样的人,只能通过×××系统看到有限的数据,并且很少去处理数据,甚至不理解数据的由来和含义,只是机械的把自己看到的数据拷贝出来,转发给相应的人。这类人发出来的数据,是否有意义,怎么解读,他自己是不知道的,只能期望收到数据的人了。

2、数据查询员/处理员:数据处理没问题,缺乏数据解读能力。

这些人可以称为分析师了,他们已经对数据有一定的理解了,对于大部分数据,他们也知道数据的定义,并且可以通过监控系统或者原始的数据,处理得到这些数据。统计学的方法,这批人还是很精通的,统计学的工具,他们也是用起来得心应手,你让他们做一下因子分析,聚类肯定是没问题,各类检验也是用的炉火纯青。他们的不足是:1、如果不告诉他们命题,那么他们就不知道该应用什么样的方法去得到结论了。2、对于数据的处理没问题,但是却没有一个很好的数据解读能力。只能在统计学的角度上解释数据。

数据分析师这群人,对于数据的处理已经不是问题了,他们的重点已经转化到怎么样去解读数据了,同样的数据,在不同人的眼中有不一致的内容。好的数据分析师,是能通过数据找到问题,准确的定位问题,准确的找到问题产生的原因,为下一步的改进,找到机会点的人。往往科班出身的人,欠缺的不是在处理数据上,而是在解读数据上,至于将数据和产品结合到一起,则是其更缺少的能力了。

4、数据应用师:将数据还原到产品中,为产品所用。

5、数据规划师:走在产品前面,让数据有新的价值方向。

1.标准报表。

回答:发生了什么?什么时候发生的?

示例:月度或季度财务报表。

我们都见过报表,它们一般是定期生成,用来回答在某个特定的领域发生了什么。从某种程度上来说它们是有用的,但无法用于制定长期决策。

2.即席查询。

回答:有多少数量?发生了多少次?在哪里?

示例:一周内各天各种门诊的病人数量报告。

即席查询的最大好处是,让你不断提出问题并寻找答案。

3.多维分析。

回答:问题到底出在哪里?我该如何寻找答案?

示例:对各种手机类型的用户进行排序,探查他们的呼叫行为。

通过多维分析(olap)的钻取功能,可以让您有初步的发现。钻取功能如同层层剥笋,发现问题所在。

4.警报。

回答:我什么时候该有所反应?现在该做什么?

示例:当销售额落后于目标时,销售总监将收到警报。

5.统计分析。

回答:为什么会出现这种情况?我错失了什么机会?

示例:银行可以弄清楚为什么重新申请房贷的客户在增多。

这时您已经可以进行一些复杂的分析,比如频次分析模型或回归分析等等。统计分析是在历史数据中进行统计并总结规律。

6.预报。

回答:如果持续这种发展趋势,未来会怎么样?还需要多少?什么时候需要?

示例:零售商可以预计特定商品未来一段时间在各个门店的需求量。

预报可以说是最热门的分析应用之一,各行各业都用得到。特别对于供应商来说,能够准确预报需求,就可以让他们合理安排库存,既不会缺货,也不会积压。

7.预测型建模。

回答:接下来会发生什么?它对业务的影响程度如何?

示例:酒店和娱乐行业可以预测哪些vip客户会对特定度假产品有兴趣。

如果您拥有上千万的客户,并希望展开一次市场营销活动,那么哪些人会是最可能响应的客户呢?如何划分出这些客户?哪些客户会流失?预测型建模能够给出解答。

8.优化。

回答:如何把事情做得更好?对于一个复杂问题来说,那种决策是最优的?

示例:在给定了业务上的优先级、资源调配的约束条件以及可用技术的情况下,请您来给出it平台优化的最佳方案,以满足每个用户的需求。

优化带来创新,它同时考虑到资源与需求,帮助您找到实现目标的最佳方式。

研究员的数据分析工作总结(专业21篇)【第四篇】

1、酒店财务部提供数据(单位:人民币万元):

2、分析原因(要求:由酒店总办牵头销售部、营业部门作出分析,要求简单、清晰,每个分析不能超过三个小点,特殊的可以另行报告)。

a、完成指标——采取哪些有效措施:

b、未完成指标——具体原因分析:

c、与去年同期相比(含同期月份及截止同期月份的累计)——上升及下降原因分析:

d、未完成指标——下一步准备采取哪些措施(以下措施下个月要分析成果):

e、尚需要酒店管理公司及集团其他部门配合的工作:

1、酒店财务部提供数据(单位:百分比):

项目7月份本月指标本月完成本年指标本年累计完成去年同期差异。

毛利率。

2、分析(要求:由酒店总办牵头营业部门作出分析,要求简单、清晰,每个分析不能超过三个小点,特殊的可以另行报告)。

a、完成指标——采取哪些有效措施:

b、未完成指标——具体原因分析:

c、与去年同期相比(含同期月份及截止同期月份的累计)——上升及下降原因分析:

d、未完成指标的——下一步准备采取哪些措施(以下措施下个月要分析成果):

e、尚需要酒店管理公司及集团其他部门配合的工作:

税款。

1、酒店财务部提供数据(单位:人民币万元):

2、分析(要求:由财务部进行分析)。

a、已完成指标采取过哪些有效措施:

b、未完成指标原因分析:

c、与去年同期相比(含同期及年累计)上升及下降原因分析:

d、在未完成指标的情况下,下一步准备采取哪些措施(以下将作为下个月分析重点):

e、尚需要酒店管理公司及集团其他部门配合的工作:

能源额。

1、酒店财务部提供数据(单位:人民币万元,百份比):

2、经营分析(要求:由酒店总办牵头各能源责任部门作出分析,要求简单、清晰,每个分析不能超过三个小点,特殊的可以另行报告)。

a、节能降耗采取哪些措施:

b、能耗超标原因分析:

c、与去年同期相比(含同期及年累计)上升及下降原因分析:

d、下一步节能降耗采取哪些措施(以下将作为下个月分析重点):

e、尚需要酒店管理公司及集团其他部门配合的工作:

研究员的数据分析工作总结(专业21篇)【第五篇】

一是认真做好各项报表的定期制作和查询,无论是本部门需要的报表还是为其他部门提供的报表。保证报表的准确性和及时性,并与报表使用人做好良好的沟通工作。并完成各类报表的分类、整理、归档工作。

二是协助主管做好现有系统的维护和后续开发工作。包括topv系统和多元化系统中的修改和程序开发。主要完成了海关进出口查验箱报表、出口当班查验箱清(“两学一做”学习活动总结)单、驳箱情况等报表导出功能以及龙门吊班其他箱量输入界面、其他岗位薪酬录入界面的开发,并完成了原有系统中交接班报表导出等功能的修改。同时,完成了系统在相关岗位的安装和维护工作,保证其正常运行。

三是配合领导和其他岗位做好各种数据的查询、统计、分析、汇总工作。做好相关数据的核实和上报工作,并确保数据的准确性和及时性。

四是完成领导交办的其他工作,认真对待,及时办理,不拖延、不误事、不敷衍,尽力做到让领导放心和满意。

三、存在的不足和今后的努力方向。

半年来,在办公室领导和同事们的指导帮助下,自己虽然做了一些力所能及的工作,但还存在很多的不足:主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。

针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同志,共同把办公室的工作做细做好。

研究员的数据分析工作总结(专业21篇)【第六篇】

但数据分析技能也是未来必不可少的工作技能之一。在数据分析行业发展成熟的国家,90%的市场决策和经营决策都是通过数据分析研究确定的。

“大数据分析师就是一群玩数据的人,玩出数据的商业价值,让数据变成生产力。”而大数据和传统数据的最大区别在于,它是在线的、实时的、规模海量且形式不规整,无章法可循,因此“会玩”这些数据的人就很重要。

国内某大型招聘平台给出的数据分析师平均薪酬为:9724(取自1139份样本),且北京、上海、广州、深圳、杭州、南京、武汉、成都、长沙为大数据分析师需求量前十的城市。

研究员的数据分析工作总结(专业21篇)【第七篇】

在数据分析岗位工作三个月以来,在公司领导的正确领导下,深入学习关于淘宝网店的相关知识,我已经从一个网店的门外汉成长为对网店有一定了解和认知的人。现向公司领导简单汇报一下我三个月以来的工作情况。

一、虚心学习,努力提高网店数据分析方面的专业知识。

作为一个食品专业出身的人,刚进公司时,对网店方面的专业知识及网店运营几乎一无所知,曾经努力学习掌握的数据分析技能在这里根本就用不到,我也曾怀疑过自己的选择,怀疑自己对踏出校门的第一份工作的选择是不是冲动的。但是,公司为我提供了宽松的学习环境和专业的指导,在不断的学习过程中,我慢慢喜欢上自己所选择的行业和工作。一方面,虚心学习每一个与网店相关的数据名词,提高自己在数据分析和处理方面的能力,坚定做好本职工作的信心和决心。另一方面,向周围的同同事学习业务知识和工作方法,取人之长,补己之短,加深了与同事之间的感情。

二、踏实工作,努力完成领导交办的各项工作任务。

三个月来,在领导和同事们的支持和配合下,自己主要做了一下几方面的工作:

1.汇总公司的产品信息日报表,并完成信息日报表的每日更新,为产品追单提供可靠依据。

2.协同仓库工作人员盘点库存,汇总库存报表,每天不定时清查入库货品,为各部门的同事提供最可靠的库存数据。

3.完成店铺经营月报表、店铺经营日报表。

4.完成每日客服接待顾客量的统计、客服工作效果及工作转化率的查询。

5.每日两次对店铺里出售的宝贝进行逐个排查,保证每款宝贝的架上数的及时更新,防止出售中的宝贝无故下架。

6.配合领导和其他岗位的同事做好各种数据的查询、统计、分析、汇总等工作。做好数据的核实和上报工作,并确保数据的准确性和及时性。

7.完成领导交代的其它各项工作,认真对待、及时办理、不拖延、不误事、不敷衍,尽量做到让领导放心和满意。

三、存在的不足及今后努力的方向。

三个月来,在公司领导和同事们的指导和配合下,自己虽然做了一些力所能。

及的工作,但还存在很多的不足,主要是阅历浅,经验少,有时遇到相对棘手的问题考虑欠周密,视角不够灵活,缺乏应变能力;理论和专业知识不够丰富,导致工作有时处于被动等等。另外,由于语言不通的问题,在与周围的同事沟通时,存在一定的障碍。

针对以上不足,在今后的工作中,自己要加强学习、深入实践、继续坚持正直、谦虚、朴实的工作作风,摆正自己的位置,尊重领导,团结同事,把网店的数据分析工作做细做好。

四、对公司人员状况及员工工作状态的分析。

1.对公司人员状况的分析。

要想管好一个企业,首先要管好这个企业的人,要想管好一个企业的人,首先要对这个企业人员的基本情况有个比较全面的、细致的、科学的正确的了解。

目前公司成员大部分为90后,是一个年轻化的团队。他们大部分在长辈们的宠爱中长大,心理素质不怎么成熟,没有自信心,没有目标,责任心不强,不怎么能吃苦,心理承受能力较弱,不爱学习,不明白工作的真正意义。不过也有一部分比较懂事,做事比较踏实、勤奋、性格也比较好。

因此,我们在招聘的时候,要招那些肯学习、善于学习、领悟力学习力强的人。不过,这部分人一般都比较现实,对待遇、公正公平、发展空间比较看重。

其实,我们要想打造一流的企业,培养一流的员工,一流的管理人员并不是难事。最重要的是要有一颗真正的,持之以恒的做事业的心。

2.对员工工作状态的分析。

目前,部分岗位存在分工不明确的现象,出现问题时,同事之前相互推诿,不愿意承担责任,这也是部分员工责任心不强的最直接反映。部分员工没有团队合作意识,这就可能导致工作在某个环节衔接不上,进而有可能出现重大问题。

因此,明确分工和加强员工的团队合作意识也是公司目前需要解决的问题。

五、对公司企业文化的分析。

企业文化,对我本人来讲,是一个管理学里面比较专业的词,我怕自己讲不好它。但我却可以深刻的体会到,这个无形的东西就在我的周围,在我们的骨髓里。因为我觉得它重要,所以,还是想讲它,而且觉得非讲不可。

在我所走到的企业里,旺旺集团的企业文化给我留下的印象最深。他们有自己明确的经营理念、经营目标、公司训、公司口号、企业标识、公司社歌和独立的传媒机构。他们的企业文化具有很强的感染力和凝聚力。

但是,很长一段时间以来,我们的公司一直处在“黎明前的黑暗”之中,为什么公司领导的那种不到山顶不罢休的气势、决心和信心,并没有感染所有的员工,那种不到山顶不罢休的气势、决心和信心并没有很好的变成我们的企业文化。没有被突出出来,没有在公司发展的日日夜夜中,张扬的体现给我们企业所有的员工们看。甚至是没有被人感觉到。

所以,加强健康向上的企业文化的建设工作,也就成为一种必要。十分的必要。也该引起足够的重视。把目前创业阶段的决心和信心力量、企业和员工相互之间的理解、信任、支持和默契融入到我们的企业文化中去。从而感染和吸引更多的优秀人才到我们中来,共同开创我们企业的未来。

工作总结ppt|工作总结怎么写|工作总结开头|工作总结结尾|工作总结报告。

研究员的数据分析工作总结(专业21篇)【第八篇】

这个题目就是开放的问一个销售问题,看分析师如何给出相关的意见或者建议。当然这不是分析范畴,但是我觉得分析师既然是做运营支撑、甚至决策,那么一些基础的销售理念是应该有的。

题目:100斤苹果怎么卖,可以卖的钱又多,卖的又快?

开题:此题目意在说如何从商品的角度去考虑如何销售的问题,传统的销售方式就是经典的4p理论。渠道,商品,价格,促销。而此问题意在从商品,价格,促销的角度去问面试者问题。

题注:

1.如果回答者答的问题说的过多,比如说渠道如何做,如果做售后,如何二次营销,范围就扩大了。

2.如果回答者的回答过于泛,或者理论的东西比较多,或者听着非常正确而不给出解决方案,那不适合一线分析师。

上面两项是减分项。

刀刀的解答:

1、渠道是重要。

用户考虑暂且放在渠道里,因为用户必须依赖渠道实现链接。但就此问题来说,有点跑题,问的是卖苹果,用户考虑一般先考虑需求和消费场景,所以不分享渠道的做法。

2、商品自己分堆。

最简单,一堆贵,一堆便宜。苹果不分拣。卖个差不多再重分,46开分。

解读:利用价格做出价格歧视的感念,同时告诉消费者4的商品比较好卖,这样一个明确的指向。

3、商品拆分。

按好坏分堆,好苹果贵30%。其余的分两堆,一般的常规卖,最差的贵50%,并贴上标签如涩苹果之类。

解读:劣质商品只是品质不好,不是不能卖高价,关键是你要告诉别人这是稀缺的。真实说明商品特征,不要做多,好的商品还是要高价的,稀缺商品要更贵。一般的商品就这样买。但是注意结合第四条。

4、时间因素。

一般早上要比晚上贵,水果尽量当天卖完,所以在晚上8点后开始半价卖。

解读:快和多都是必须的,水果隔夜很多都会坏。晚上8点是大家出来遛弯的时候,可以做清仓了。不留呆滞库存是关键,高周转是关键。手里最好留的是钞票,而不是货物。

5、地点。

这个本来不想说,还是说一下,火车站和汽车站绝对卖不出去,摊位没有。最重要的是你见过这种地方卖水果的销售有好的么?好地方在地铁口,菜市口,学校门口。

解读:人流多并不代表需求好,菜市场门口绝对比火车站好。为什么,火车站贵这是大家都知道的,再者,谁没事到火车站去买水果啊。菜市场还是做长久生意的地方,学校门口,地铁口大家多观察就知道了。

商品这个东西可以玩的很多。留几句话:

不要卖货源不稳定的某类商品。

坚决下架无法销售占位置的商品。

主推非标准品。

流行品一定是打折卖的。

研究员的数据分析工作总结(专业21篇)【第九篇】

1、要认真研究课程标准。

在课程改革中,教师是关键,教师对新课程的理解与参与是推进课程改革的前提。认真学习数学课程标准,对课改有所了解。课程标准明确规定了教学的目的、教学目标、教学的指导思想以及教学内容的确定和安排。继承传统,更新教学观念。

高中数学新课标指出:“丰富学生们的学习方式,改进学生们的学习方法是高中数学课程追求的基本理念。学生们的数学学习活动不应只限于对概念、结论和技能的记忆、模仿和接受,独立思考、自主探索、动手实践、合作交流、阅读自学等都是学习数学的重要方式。在高中数学教导中,教师的讲授仍然是重要的教学方式之一,但要注意的是必须关注学生们的主体参与,师生互动”。

2、合理使用教科书,提高课堂效益。

对教材内容,教学时需要作适当处理,适当补充或降低难度是备课必须处理的。灵活使用教材,才能在教学中少走弯路,提高教学质量。对教材中存在的一些问题,教师应认真理解课标,对课标要求的重点内容要作适量的补充;对教材中不符合学生们实际的题目要作适当的调整。此外,还应把握教材的“度”,不要想一步到位,如函数性质的教学,要多次螺旋上升,逐步加深。

3、改进学生们的学习方式,注意问题的提出、探究和解决。

教会学生们发现问题和提出问题的方法。以问题引导学生们去发现、探究、归纳、总结。引导他们更加主动、有兴趣的学,培养问题意识。

4、在课后作业,反馈练习中培养学生们自学能力。

课后作业和反馈练习、测试是检查学生们学习效果的重要手段。抓好这一环节的教学,也有利于复习和巩固旧课,还锻炼了学生们的自学能力。在学完一课、一单元后,让学生们主动归纳总结,要求学生们尽量自己独立完成,以便正确反馈教学效果。

5、分层次教学。

我所教的两个班,层次差别大,1班主要是落后面的学生们,初中的基础差,高中的知识对他们来说就更增加了难度,而2班也是两极分化严重,前面16个学生们的基础扎实,成绩在中等以上,而后面的30个学生们的成绩却处于中下以下的水*,因此,不管是备课还是备练习,我都注重分层次教学,注意引导他们从基础做起,同时又不乏让他们可以开拓思维,积极动脑的提高性知识,让人人有的学,让人人学有获。

1、书本习题都较简单和基础,而我们的教辅题目偏难,加重了学生们的学习负担,而且学生们完成情况很不好。课时又不足,教学时间紧,没时间讲评这些练习题。

2、在教学中,经常出现一节课的教学任务完不成的现象,更少巩固练习的时间。勉强按规定时间讲完,一些学生们听得似懂非懂,造成差生越来越多。而且知识内容需要补充的内容有:乘法公式;因式分解的十字相乘法;一元二次方程及根与系数的关系;根式的运算;解不等式等知识。

3、虽然经常要求学生们课后要去完成教辅上的精编的题目,但是,相当部分的同学还是没办法完成。学生们的课业负担太重,有的学生们则是学习意识淡薄。

1、要处理好课时紧张与教学内容多的矛盾,加强对教材的研究;

2、注意对教辅材料题目的精编;

3、要加强对数学后进生的思想教育。

总之,作为一名刚教高中的新教师,对教材的不熟悉,对重难点的突破,对考点的把握,对学生们的方法指导,对高中教学的经验都是一个很大漏洞,我将把握好每一天,继续努力,争取更好的成绩。

研究员的数据分析工作总结(专业21篇)【第十篇】

近期主要完成了某产品用户画像分析,从9月底拿到数据,到上周输出第三稿,中间历时一个半月,如果从收到需求,到三稿输出,那就超过两个月,在这次整个分析过程中,遇到了不少问题,尝试了使用不同方法,现在是时候做一个复盘、总结、反思。

在开始阶段,遇到的主要问题是客户的要求是分析产品用户画像报告,因为没有直接跟客户沟通,而需求只有简单的一句话,我只能根据经验列出要分析的要点,确定需要的数据维度。在我确定分析框架后,我发现如果按照我方的想法最后输出的结果却不是客户想到的,那就白做了,所以确定分析框架后还需要客户确认,思路是否可行,分析方向有无异议。这个问题还算比较好解决,客户同意了分析思路即可。

经过与客户沟通后,到了第二阶段,发起提数需求。这个过程总体算比较顺利,客户方数据库工程师首先反馈了一份样本数据,让我方确认数据是否正确,如正确,则提供全量样本。数据验证的过程,主要是由我来完成,对样本数据,我提出了一些疑问,对方也一一解答。当然还有个别字段逻辑问题,我没有发现,对后续的分析带来了一些影响,造成最后能使用的维度减少,是一个遗憾。

拿到全量数据后,对数据进行清洗。在这个过程中发现数据质量非常不理想,很多字段的缺失值占比很大,个别字段也有异常值,总体样本中能使用的记录锐减。一开始我的处理方法比较简单,对缺失值占比达的字段直接不使用,带来的后果就是输出的第一版分析报告过于简单。

重新回到数据,再次对数据进行摸底,而且也调整分析方法,尝试使用聚类分析方法,按用户活跃渠道,对用进行分群,分群后,再结合其他维度,对用户进行描述。这一次输出的报告还是存在一些问题,最大问题就是用户群之间区别不明显,只能继续修改。中间因为要做另一个分析,用户画像分析就暂时先放一边。

完成另一个分析后,继续回到产品用户画像分析,这次同事提出了一些建议,在没有更好的思路前,我按照同事的建议第三次修改分析报告。当然还是要先处理数据,这次我对异常值、缺失值就行了处理,异常值使用的是盖帽法,对缺失值,在一些字段中用0填补,这样增加了可使用的维度。数据清洗完后,对连续变量进行分箱处理,这一次还是先使用聚类分析,对几个字段进行聚类,这样增加了两个大的维度,接着基于两个大的维度,使用对应分析方法,结合其他维度观察变量间的关系,最后的结果显示有部分变量之间是存在明显的关系,有些几乎没有区别。数据处理完后,再次输出分析报告。

完成第三次分析后,我回过头来看看分析中存在的问题,尤其是使用对应分析,查阅了一些资料,发现在对应分析中,应该先进行预分析。聚类分析,两次我都是使用k—means聚类,其实还可以使用二阶聚类,二阶聚类适用于分类变量,这是快速聚类不适用的,我尝试在清洗后的数据中使用二阶聚类,效果尚可。

最近恰好又在看丁亚军老师的讲课视频,讲到聚类分析,再结合我在工作中的应用,对聚类分析方法有了新的认识。聚类方法在刚兴起的时候,是不被传统的统计学家们接受,因为这个方法太简单,没有使用到过多的统计学知识。在实际的工作中,聚类使用的频率还是很高的,尤其是在用户分群方面,用户特征的描述。对应分析是第一次用到,为什么会想到使用对应分析,主要是根据变量类型,几个分类型变量,探究变量间的关系,除了相关分析外,对应分析也使用,而且它的结果更直观。

最后能完成第三稿也要感谢同事的建议,一个人的力量是有限的,群策群力、集思广益才能做得更好。

35 3083248
");