函数知识点总结精编4篇
【导言】此例“函数知识点总结精编4篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!
Excel表格函数的使用技巧1
函数COUNT在计数时,将把数值型的数字计算进去;但是错误值、空值、逻辑值、日期、文字则被忽略。如果参数是一个数组或引用,那么只统计数组或引用中的数字;数组中或引用的空单元格、逻辑值、文字或错误值都将忽略。如果要统计逻辑值、文字或错误值,请使用函数COUNTA(COUNTIF按EXCEL的说明也行,但常出毛病)。
示例(一)1、我要是写成=COUNT(B1,D1),那就是计算机B1和D1两个单元格中有几个数字(不包括C1单元格),
2、但是如果我写成=COUNT(B1:D1),注意,中间用冒号了,那就是计算机从B1单元格到D1单元格中数字的个数了,(这就包括数字单元格了)
3、再有,我写成=COUNT("B1","D1","123","hello"),那结果就是1,因为只有"123"一个数字,B1和D1因为加了引号,所以是字符了,不是单元格。
4、如果A1为1,A5为3,A7为2,其他均为空,则:
COUNT(A1:A7)等于3备注:计算出A1到A7中,数字的'个数
COUNT(A4:A7)等于2备注:计算出A4到A7中,数字的个数
COUNT(A1:A7,2)等于4备注:计算A1到A7单元格和数字2一起,一共是多少个数字(A1到A7中有3个,加上数字2,一共4个)
示例(二)在数据库(sqlserver),它的格式为:count(),括号里表示要统计的对象。
如果括号内是用星号(数字键8上面那个),就表示统计所有的内容。如果是个具体的某一行或列的内容,则表示该行或者列的内容。(例:count(学生),则表示统计所有学生的个数)。
他山之石,可以攻玉。上面的4篇函数知识点总结是由山草香精心整理的函数范文范本,感谢您的阅读与参考。
次函数的三种表达式2
一般式:y=ax^2+bx+c(a,b,c为常数,a≠0)
顶点式:y=a(x-h)^2+k[抛物线的顶点P(h,k)]
交点式:y=a(x-x)(x-x)[仅限于与x轴有交点A(x,0)和B(x,0)的抛物线]
注:在3种形式的互相转化中,有如下关系:
h=-b/2a k=(4ac-b^2)/4a x,x=(-b±√b^2-4ac)/2a
函数知识点总结3
1.常量和变量
在某变化过程中可以取不同数值的量,叫做变量.在某变化过程中保持同一数值的量或数,叫常量或常数.
2.函数
设在一个变化过程中有两个变量x与y,如果对于x在某一范围的每一个值,y都有唯一的值与它对应,那么就说x是自变量,y是x的函数.
3.自变量的取值范围
(1)整式:自变量取一切实数.(2)分式:分母不为零.
(3)偶次方根:被开方数为非负数.
(4)零指数与负整数指数幂:底数不为零.
4.函数值
对于自变量在取值范围内的一个确定的值,如当x=a时,函数有唯一确定的对应值,这个对应值,叫做x=a时的函数值.
5.函数的表示法
(1)解析法;(2)列表法;(3)图象法.
6.函数的图象
把自变量x的一个值和函数y的对应值分别作为点的横坐标和纵坐标,可以在平面直角坐标系内描出一个点,所有这些点的集合,叫做这个函数的图象.由函数解析式画函数图象的步骤:
(1)写出函数解析式及自变量的取值范围;
(2)列表:列表给出自变量与函数的一些对应值;
(3)描点:以表中对应值为坐标,在坐标平面内描出相应的点;
(4)连线:用平滑曲线,按照自变量由小到大的顺序,把所描各点连接起来.
7.一次函数
(1)一次函数
如果y=kx+b(k、b是常数,k≠0),那么y叫做x的一次函数.
特别地,当b=0时,一次函数y=kx+b成为y=kx(k是常数,k≠0),这时,y叫做x的正比例函数.
(2)一次函数的图象
一次函数y=kx+b的图象是一条经过(0,b)点和点的直线.特别地,正比例函数图象是一条经过原点的直线.需要说明的是,在平面直角坐标系中,“直线”并不等价于“一次函数y=kx+b(k≠0)的图象”,因为还有直线y=m(此时k=0)和直线x=n(此时k不存在),它们不是一次函数图象.
(3)一次函数的性质
当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.直线y=kx+b与y轴的交点坐标为(0,b),与x轴的交点坐标为.
(4)用函数观点看方程(组)与不等式
①任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:一次函数y=kx+b(k,b为常数,k≠0),当y=0时,求相应的自变量的值,从图象上看,相当于已知直线y=kx+b,确定它与x轴交点的横坐标.
②二元一次方程组对应两个一次函数,于是也对应两条直线,从“数”的`角度看,解方程组相当于考虑自变量为何值时两个函数值相等,以及这两个函数值是何值;从“形”的角度看,解方程组相当于确定两条直线的交点的坐标.
③任何一元一次不等式都可以转化ax+b>0或ax+b<0(a、b为常数,a≠0)的形式,解一元一次不等式可以看做:当一次函数值大于0或小于0时,求自变量相应的取值范围.
8.反比例函数(1)反比例函数
(1)如果(k是常数,k≠0),那么y叫做x的反比例函数.
(2)反比例函数的图象反比例函数的图象是双曲线.
(3)反比例函数的性质
①当k>0时,图象的两个分支分别在第一、三象限内,在各自的象限内,y随x的增大而减小.
②当k<0时,图象的两个分支分别在第二、四象限内,在各自的象限内,y随x的增大而增大.
③反比例函数图象关于直线y=±x对称,关于原点对称.
(4)k的两种求法
①若点(x0,y0)在双曲线上,则k=x0y0.②k的几何意义:
若双曲线上任一点A(x,y),AB⊥x轴于B,则S△AOB
(5)正比例函数和反比例函数的交点问题
若正比例函数y=k1x(k1≠0),反比例函数,则当k1k2<0时,两函数图象无交点;
当k1k2>0时,两函数图象有两个交点,坐标分别为由此可知,正反比例函数的图象若有交点,两交点一定关于原点对称.
1.二次函数
如果y=ax2+bx+c(a,b,c为常数,a≠0),那么y叫做x的二次函数.
几种特殊的二次函数:y=ax2(a≠0);y=ax2+c(ac≠0);y=ax2+bx(ab≠0);y=a(x-h)2(a≠0).
2.二次函数的图象
二次函数y=ax2+bx+c的图象是对称轴平行于y轴的一条抛物线.由y=ax2(a≠0)的图象,通过平移可得到y=a(x-h)2+k(a≠0)的图象.
3.二次函数的性质
二次函数y=ax2+bx+c的性质对应在它的图象上,有如下性质:
(1)抛物线y=ax2+bx+c的顶点是,对称轴是直线,顶点必在对称轴上;
(2)若a>0,抛物线y=ax2+bx+c的开口向上,因此,对于抛物线上的任意一点(x,y),当x<时,y随x的增大而减小;当x>时,y随x的增大而增大;当x=,y有最小值;若a<0,抛物线y=ax2+bx+c的开口向下,因此,对于抛物线上的任意一点(x,y),当x<,y随x的增大而增大;当时,y随x的增大而减小;当x=时,y有最大值;
(3)抛物线y=ax2+bx+c与y轴的交点为(0,c);
(4)在二次函数y=ax2+bx+c中,令y=0可得到抛物线y=ax2+bx+c与x轴交点的情况:
<0时,抛物线y=ax2+bx+c与x轴没有公共点.=0时,抛物线y=ax2+bx+c与x轴只有一个公共点,即为此抛物线的顶点;当=b2-4ac>0,抛物线y=ax2+bx+c与x轴有两个不同的公共点,它们的坐标分别是和,这两点的距离为;当当4.抛物线的平移
抛物线y=a(x-h)2+k与y=ax2形状相同,位置不同.把抛物线y=ax2向上(下)、向左(右)平移,可以得到抛物线y=a(x-h)2+k.平移的方向、距离要根据h、k的值来决定.
换元法4
一元二次方程ax2+bx+c=0(a,b,c属于R,a≠0)根辨别,delta=b2-4ac,不仅用于确定根的性质,而且作为一种求解方法问题,代数变形,解方程(群),解不等式,研究函数甚至几何,三角运算具有非常广泛的应用。
上一篇:实验的总结(精编3篇)
下一篇:校园运动会活动总结精选4篇