高二物理公式总结【优推29篇】
高二物理公式包括运动学、牛顿定律、能量守恒、电磁学等基本原理,涵盖速度、加速度、力、功、能量等重要概念。下面是阿拉网友整理编辑的高二物理公式总结相关范文,供大家学习参考,喜欢就分享给朋友吧!
高二物理公式总结 篇1
氧化物由两种元素组成,其中一种元素是氧元素的化合物。能和氧气反应产生的物质叫做氧化物。根据化学性质不同,氧化物可分为酸性氧化物和碱性氧化物两大类。
1、酸碱性
根据酸碱特性,氧化物可分成4类:酸性的、碱性的、两性的和中性的。
(1)酸性氧化物。溶于水呈酸性溶液或同碱发生的氧化物是酸性氧化物。例如:
P4O10+6H2O→4H3PO4
Sb2O5+2NaOH+5H2O→2Na[Sb(OH)6]
大多数非金属共价型氧化物和某些电正性较弱的高氧化态金属的氧化物都是酸性的。
(2)碱性氧化物。溶于水呈碱性溶液或同酸发生的氧化物是碱性氧化物。例如:
CaO+H2O→Ca(OH)2
Fe2O3+6HCl→2FeCl3+3H2O
大多数电正性元素的氧化物是碱性的。
(3)两性氧化物。同强酸作用呈碱性,又同强碱作用呈酸性的氧化物是两性氧化物。例如:
ZnO+2HCl→ZnCl2+H2O
ZnO+2NaOH+H2O→Na2[Zn(OH)4]
靠近长周期表中非金属区的一些金属元素的氧化物易显两性。
(4)中性氧化物。既不与酸反应也不与碱反应的氧化物叫做中性氧化物。例如CO和N2O。
2、分类总结
①按与氧化合的另一种元素的类型分为金属氧化物与非金属氧化物。
②按成键类型或组成粒子类型分为离子型氧化物与共价型氧化物。
离子型氧化物:部分活泼金属元素形成的氧化物如Na2O、CaO等。
共价型氧化物:部分金属元素和所有非金属元素的氧化物如MnO2、HgO、SO2、ClO2等。
③按照氧的氧化态分为普通氧化物(氧的氧化态为-2)、过氧化物(氧的氧化态为-1)、超氧化物(氧的氧化态为-1/2)和臭氧化物(氧的氧化态为-1/3)。
④按照酸碱性及是否与水生成盐,以及生成的盐分为酸性氧化物、碱性氧化物和两性氧化物、中性氧化物、复杂氧化物。
高二物理公式总结 篇2
一、静电现象
1、了解常见的静电现象。
2、静电的产生
(1)摩擦起电:用丝绸摩擦的玻璃棒带正电,用毛皮摩擦的橡皮棒带负电。
(2)接触起电:
(3)感应起电:
3、同种 电荷相斥,异种电荷相吸。
二、物质的电性及电荷守恒定律
1、物质的原子结构:物质是由分子,原子组成,原子由带正电的原子核以及环绕原子核运动的带负电的电子组成的。而原子核又是由质子和中子组成的。质子带正电、中子不带电。在一般情况下,物体内部的原子中电子的数目等于质子的数目,整个物体不带电,呈电中性。
2、电荷守恒定律:任何孤立系统的电荷总数保持不变。在一个系统的内部,电荷可以从一个物体传到另一个物体。但是,在这个过程中系统的总的电荷时不改变的。
3、用物质的原子结构和电荷守恒定律分析静电现象
(1)分析摩擦起电
(2)分析接触起电
(3)分析感应起电
4、物体带电的本质:电荷发生转移的过程,电荷并没有产生或消失。
例题分析:
1、下列说法正确的是( A )
A.摩擦起电和静电感应都是使物体的正负电荷分开,而总电荷量并未变化
B.用毛皮摩擦过的硬橡胶棒带负电,是摩擦过程中硬橡胶棒上的正电荷转移到了毛皮上
C.用丝绸摩擦过的玻璃棒带正电荷是摩擦过程中玻璃棒得到了正电荷
D.物体不带电,表明物体中没有电荷
2、如图8-5所示,把一个不带电的枕型导体靠近带正电的小球,由于静电感应,在a,b端分别出现负、正电荷,则以下说法正确的是:( C )
A.闭合K1,有电子从枕型导体流向地
B.闭合K2,有电子从枕型导体流向地
C.闭合K1,有电子从地流向枕型导体
D.闭合K2,没有电子通过K2
高二物理公式总结 篇3
1、根据静电能吸引轻小物体的性质和同种电荷相排斥、异种电荷相吸引的原理,主要应用有:静电复印、静电除尘、静电喷漆、静电植绒,静电喷药等。
2、利用高压静电产生的电场,应用有:静电保鲜、静电灭菌、作物种子处理等。
3、利用静电放电产生的臭氧、无菌消毒等
雷电是自然界发生的大规模静电放电现象,可产生大量的臭氧,并可以使大气中的氮合成为氨,供给植物营养。
4、防止静电的主要途径:
(1)避免产生静电。如在可能情况下选用不容易产生静电的材料。
(2)避免静电的积累。产生静电要设法导走,如增加空气湿度,接地等。
高二物理公式总结 篇4
1.水平方向速度:Vx=V0
2.竖直方向速度:Vy=gt
3.水平方向位移:x=V0t
4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2+Vy2)1/2=[V02+(gt)2]1/2,合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0
7.合位移:s=(x2+y2)1/2,位移方向与水平夹角α:tgα=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
高二物理公式总结 篇5
一、传感器的及其工作原理
1、有一些元件它能够感受诸如力、温度、光、声、化学成分等非电学量,并能把它们按照一定的规律转换为电压、电流等电学量,或转换为电路的通断.我们把这种元件叫做传感器.它的优点是:把非电学量转换为电学量以后,就可以很方便地进行测量、传输、处理和控制了.
2、光敏电阻在光照射下电阻变化的原因:有些物质,例如硫化镉,是一种半导体材料,无光照时,载流子极少,导电性能不好;随着光照的增强,载流子增多,导电性变好.光照越强,光敏电阻阻值越小.
3、金属导体的电阻随温度的升高而增大,热敏电阻的阻值随温度的升高而减小,且阻值随温度变化非常明显.
金属热电阻与热敏电阻都能够把温度这个热学量转换为电阻这个电学量,金属热电阻的化学稳定性好,测温范围大,但灵敏度较差.
二、传感器的应用(一)
1.光敏电阻
2.热敏电阻和金属热电阻
3.电容式位移传感器
4.力传感器————将力信号转化为电流信号的元件.
5.霍尔元件
霍尔元件是将电磁感应这个磁学量转化为电压这个电学量的元件.
外部磁场使运动的载流子受到洛伦兹力,在导体板的一侧聚集,在导体板的另一侧会出现多余的另一种电荷,从而形成横向电场;横向电场对电子施加与洛伦兹力方向相反的静电力,当静电力与洛伦兹力达到平衡时,导体板左右两例会形成稳定的电压,被称为霍尔电势差或霍尔电压.
三、传感器的应用(二)
1.传感器应用的一般模式
2.传感器应用:
力传感器的应用——电子秤
声传感器的应用——话筒
温度传感器的应用——电熨斗、电饭锅、测温仪
光传感器的应用——鼠标器、火灾报警器
四、传感器的应用实例:
1、光控开关
2、温度报警器
五、传感器定义
国家标准GB7665-87对传感器下的定义是:“能感受规定的被测量件并按照一定的规律(数学函数法则)转换成可用信号的器件或装置,通常由敏感元件和转换元件组成”。
中国物联网校企联盟认为,传感器的存在和发展,让物体有了触觉、味觉和嗅觉等感官,让物体慢慢变得活了起来。”
“传感器”在新韦式大词典中定义为:“从一个系统接受功率,通常以另一种形式将功率送到第二个系统中的器件”。
六、主要作用
人们为了从外界获取信息,必须借助于感觉器官。
而单靠人们自身的'感觉器官,在研究自然现象和规律以及生产活动中它们的功能就远远不够了。为适应这种情况,就需要传感器。因此可以说,传感器是人类五官的延长,又称之为电五官。
新技术革命的到来,世界开始进入信息时代。在利用信息的过程中,首先要解决的就是要获取准确可靠的信息,而传感器是获取自然和生产领域中信息的主要途径与手段。
在现代工业生产尤其是自动化生产过程中,要用各种传感器来监视和控制生产过程中的各个参数,使设备工作在正常状态或状态,并使产品达到的质量。因此可以说,没有众多的优良的传感器,现代化生产也就失去了基础。
在基础学科研究中,传感器更具有突出的地位。现代科学技术的发展,进入了许多新领域:例如在宏观上要观察上千光年的茫茫宇宙,微观上要观察小到fm的粒子世界,纵向上要观察长达数十万年的天体演化,短到s的瞬间反应。此外,还出现了对深化物质认识、开拓新能源、新材料等具有重要作用的各种极端技术研究,如超高温、超低温、超高压、超高真空、超强磁场、超弱磁场等等。显然,要获取大量人类感官无法直接获取的信息,没有相适应的传感器是不可能的。许多基础科学研究的障碍,首先就在于对象信息的获取存在困难,而一些新机理和高灵敏度的检测传感器的出现,往往会导致该领域内的突破。一些传感器的发展,往往是一些边缘学科开发的先驱。
传感器早已渗透到诸如工业生产、宇宙开发、海洋探测、环境保护、资源调查、医学诊断、生物工程、甚至文物保护等等极其之泛的领域。可以毫不夸张地说,从茫茫的太空,到浩瀚的海洋,以至各种复杂的工程系统,几乎每一个现代化项目,都离不开各种各样的传感器。
由此可见,传感器技术在发展经济、推动社会进步方面的重要作用,是十分明显的。世界各国都十分重视这一领域的发展。相信不久的将来,传感器技术将会出现一个飞跃,达到与其重要地位相称的新水平。
高二物理公式总结 篇6
一、原子结构知识点:
1、电子的发现和汤姆生的原子模型:
(1)电子的发现:
18英国物理学家汤姆生,对阴极射线进行了一系列的研究,从而发现了电子。
电子的发现表明:原子存在精细结构,从而打破了原子不可再分的观念。
(2)汤姆生的原子模型:
19汤姆生设想原子是一个带电小球,它的正电荷均匀分布在整个球体内,而带负电的电子镶嵌在正电荷中。
2、α粒子散射实验和原子核结构模型
(1)α粒子散射实验:19,卢瑟福及助手盖革手吗斯顿完成
①装置:
② 现象:
a. 绝大多数α粒子穿过金箔后,仍沿原来方向运动,不发生偏转。
b. 有少数α粒子发生较大角度的偏转
c. 有极少数α粒子的偏转角超过了90度,有的几乎达到180度,即被反向弹回。
(2)原子的核式结构模型:
由于α粒子的质量是电子质量的七千多倍,所以电子不会使α粒子运动方向发生明显的改变,只有原子中的正电荷才有可能对α粒子的运动产生明显的影响。如果正电荷在原子中的分布,像汤姆生模型那模均匀分布,穿过金箔的α粒了所受正电荷的作用力在各方向平衡,α粒了运动将不发生明显改变。散射实验现象证明,原子中正电荷不是均匀分布在原子中的。
19,卢瑟福通过对α粒子散射实验的分析计算提出原子核式结构模型:在原子中心存在一个很小的核,称为原子核,原子核集中了原子所有正电荷和几乎全部的质量,带负电荷的电子在核外空间绕核旋转。
原子核半径小于10-14m,原子轨道半径约10-10m。
3、玻尔的原子模型
(1)原子核式结构模型与经典电磁理论的矛盾(两方面)
a. 电子绕核作圆周运动是加速运动,按照经典理论,加速运动的电荷,要不断地向周围发射电磁波,电子的能量就要不断减少,最后电子要落到原子核上,这与原子通常是稳定的事实相矛盾。
b. 电子绕核旋转时辐射电磁波的频率应等于电子绕核旋转的频率,随着旋转轨道的连续变小,电子辐射的电磁波的频率也应是连续变化,因此按照这种推理原子光谱应是连续光谱,这种原子光谱是线状光谱事实相矛盾。
(2)玻尔理论
上述两个矛盾说明,经典电磁理论已不适用原子系统,玻尔从光谱学成就得到启发,利用普朗克的能量量了化的概念,提了三个假设:
①定态假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然做加速运动,但并不向外在辐射能量,这些状态叫定态。
②跃迁假设:原子从一个定态(设能量为E2)跃迁到另一定态(设能量为E1)时,它辐射成吸收一定频率的光子,光子的能量由这两个定态的能量差决定,即 hv=E2-E1
③轨道量子化假设,原子的不同能量状态,跟电子不同的运行轨道相对应。原子的能量不连续因而电子可能轨道的分布也是不连续的。即轨道半径跟电子动量mv的乘积等于h/2π的整数倍,即:轨道半径跟电了动量mv的乘积等于h/2π的整数倍,即
n为正整数,称量数数
(3)玻尔的氢子模型:
①氢原子的能级公式和轨道半径公式:玻尔在三条假设基础上,利用经典电磁理论和牛顿力学,计算出氢原子核外电子的各条可能轨道的半径,以及电子在各条轨道上运行时原子的能量,(包括电子的动能和原子的热能。)
氢原子中电子在第几条可能轨道上运动时,氢原子的能量En,和电子轨道半径rn分别为:
其中E1、r1为离核最近的第一条轨道(即n=1)的氢原子能量和轨道半径。即:E1=-, r1=×10-10m(以电子距原子核无穷远时电势能为零计算)
②氢原子的能级图:氢原子的各个定态的能量值,叫氢原子的能级。按能量的大小用图开像的表示出来即能级图。
其中n=1的定态称为基态。n=2以上的定态,称为激发态。
二、原子核知识点
1、天然放射现象
(1)天然放射现象的发现:18法国物理学,贝克勒耳发现铀或铀矿石能放射出某种人眼看不见的射线。这种射线可穿透黑纸而使照相底片感光。
放射性:物质能发射出上述射线的性质称放射性
放射性元素:具有放射性的元素称放射性元素
天然放射现象:某种元素白发地放射射线的现象,叫天然放射现象
天然放射现象:表明原子核存在精细结构,是可以再分的
(2)放射线的'成份和性质:用电场和磁场来研究放射性元素射出的射线,在电场中轨迹:
2、原子核的衰变:
(1)衰变:原子核由于放出某种粒子而转变成新核的变化称为衰变在原子核的衰变过程中,电荷数和质量数守恒
γ射线是伴随α、β衰变放射出来的高频光子流
在β衰变中新核质子数多一个,而质量数不变是由于反映中有一个中子变为一个质子和一个电子
(2)半衰期:放射性元素的原子核的半数发生衰变所需要的时间,称该元素的半衰期。
一放射性元素,测得质量为m,半衰期为T,经时间t后,剩余未衰变的放射性元素的质量为m
3、原子核的人工转变:原子核的人工转变是指用人工的方法(例如用高速粒子轰击原子核)使原子核发生转变。
(1)质子的发现:19,卢瑟福用α粒子轰击氦原子核发现了质子。
(2)中子的发现:1932年,查德威克用α粒子轰击铍核,发现中子。
4、原子核的组成和放射性同位素
(1)原子核的组成:原子核是由质子和中子组成,质子和中子统称为核子
在原子核中:
质子数等于电荷数
核子数等于质量数
中子数等于质量数减电荷数
(2)放射性同位素:具有相同的质子和不同中子数的原子互称同位素,放射性同位素:具有放射性的同位素叫放射性同位素。
正电子的发现:用α粒子轰击铝时,发生核反应。
发生+β衰变,放出正电子
三、核能知识点:
1、核能:核子结合成的子核或将原子核分解为核子时,都要放出或吸收能量,称为核能。
2、质能方程:爱因斯坦提出物体的质量和能量的关系:
E=mc2——质能方程
3、核能的计算:在核反应中,及应后的总质量,少于反应前的总质量即出现质量亏损,这样的反就是放能反应,若反应后的总质量大于反应前的总质量,这样的反应是吸能反应。
吸收或放出的能量,与质量变化的关系为:
为了计算方便以后在计算核能时我们用以下两种方法
方法一:若已知条件中以千克作单位给出,用以下公式计算
公式中单位:
方法二:若已知条件中以作单位给出,用以下公式计算
公式中单位:
4、释放核能的途径——裂变和聚变
(1)裂变反应:
①裂变:重核在一定条件下转变成两个中等质量的核的反应,叫做原子核的裂变反应。
②链式反应:在裂变反应用产生的中子,再被其他铀核浮获使反应继续下去。
链式反应的条件:
③裂变时平均每个核子放能约1Mev能量
1kg全部裂变放出的能量相当于2500吨优质煤完全燃烧放出能量
(2)聚变反应:
①聚变反应:轻的原子核聚合成较重的原子核的反应,称为聚变反应。
②平均每个核子放出3Mev的能量
③聚变反应的条件;几百万摄氏度的高温
高二物理公式总结 篇7
动量与动能的比较:
①动量是矢量,动能是标量。
②动量是用来描述机械运动互相转移的物理量,而动能往往用来描述机械运动与其他运动(比如热、光、电等)相互转化的物理量。
比如完全非弹性碰撞过程研究机械运动转移——速度的变化可以用动量守恒,若要研究碰撞过程改变成内能的机械能则要用动能为损失去计算了。所以动量和动能是从不同侧面反映和描述机械运动的物理量。
动量守恒定律与机械能守恒定律比较:前者是矢量式,有广泛的适用范围,而后者是标量式其适用范围则要窄得多。这些区别在使用中一定要注意。
●碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。
以物体间碰撞形式区分,可以分为“对心碰撞”(正碰),而物体碰前速度沿它们质心的连线;“非对心碰撞”——中学阶段不研究。
以物体碰撞前后两物体总动能是否变化区分,可以分为:“弹性碰撞”。碰撞前后物体系总动能守恒;“非弹性碰撞”,完全非弹性碰撞是非弹性碰撞的特例,这种碰撞,物体在相碰后粘合在一起,动能损失最大。
各类碰撞都遵守动量守恒定律和能量守恒定律,不过在非弹性碰撞中,有一部分动能转变成了其他形式能量,因此动能不守恒了。
高二物理公式总结 篇8
一、本学期主要工作:
1、严格按开学初制定的计划进行备课组工作。
2、每周四上午在高二小会议室集体备课一次,定时间定地点,有中心发言、讨论交流等。
3、教研的重点是《物理新课程标准》的学习和研究。
4、每天布置35题作业,xx科面向高考。力争全批全改。
5、单元测验在集体备课的基础上由肖红波组织命题。文科单元测验由周国馨命题。
6肖红波和张xx老师建立了“课堂练习题库”,全备课组的老师的课堂练习都从该题库选题。全备课组的老师资源共享。
7、全学期由张xx老师制作课件,全备课组的老师资源共享。
8、统一资料,统一测验,统一分析,统一进度。
9、培优由肖红波老师在1班进行,辅差由各任课老师负责。
二、集体备课情况
每周四上午第二节在级组会议室集体备课一次,备课内容包括新课标新考纲的学习研究,讲学稿的设计,习题的选取,测验题的分析总结,课本内容的深入探讨,实验的设计和仪器的制作。
三、讲学稿
xx科的讲学稿在集体备课时,认真研究课本内容,考纲要求和学习情况的基础上,每节课都设计讲学稿,每个讲学稿都有课标要求、自学指引,课前预习,堂上练习和课外作业,真正贯彻了“先学后教”的宗旨,从学生的反映和测试情况来看,讲学稿彻底改变了学生的学习习惯,培养了学生的学习能力,取得了很好的学习成果。
文理基础的讲学稿以考点为蓝本编写,在集体备课的和认真钻研考纲的基础上,由周国兴老师编写,有效的'提高了复习效率,学生反应良好。
四、教研及培优
肖红波的论文《在物理教学中实施实施探究性学习》获学校论文评比一等奖。利用课外时间培优扶差,高二级在物理考生中举办了一次物理知识竞赛,选拔出了5名同学准备参加全国中学生物理知识竞赛。
五、进修情况
张xx老师参加区教育区组织的教育硕士研修班的学习,并已经完成了第一阶级的学习。
六、课外活动
在交到《交流电》一节时,为了加深学生对交流电、变压器的认识和理解,高二级组织了物理考生到容桂宏图发电厂参观学习。在学到火箭的反冲运动时,为了加深学生对动量知道的理解和加强爱国主义教育,还组织学生到北窖参加航空航天科技展。
高二物理公式总结 篇9
一、力
1.解力学题堡垒坚,受力分析是关键;分析受力性质力,根据效果来处理。
2.分析受力要仔细,定量计算七种力;重力有无看提示,根据状态定弹力。
先有弹力后摩擦,相对运动是依据;万有引力在万物,电场力存在定无疑。
洛仑兹力安培力,二者实质是统一;相互垂直力,平行无力要切记。
3.同一直线定方向,计算结果只是“量”,某量方向若未定,计算结果给指明。
两力合力小和大,两个力成q角夹,平行四边形定法。
合力大小随q变,只在最小间,多力合力合另边。
多力问题状态揭,正交分解来解决,三角函数能化解。
4.力学问题方法多,整体隔离和假设;整体只需看外力,求解内力隔离做。
状态相同用整体,否则隔离用得多;即使状态不相同,整体牛二也可做。
假设某力有或无,根据计算来定夺;极限法抓临界态,程序法按顺序做。
正交分解选坐标,轴上矢量尽量多。
二、曲线运动、万有引力
1.运动轨迹为曲线,向心力存在是条件,曲线运动速度变,方向就是该点切线。
2.圆周运动向心力,供需关系在心里,径向合力提供足,需mu平方比R,
mrw平方也需,供求平衡不心离。
3.万有引力因质量生,存在于世界万物中,皆因天体质量大,万有引力显神通。
卫星绕着天体行,快慢运动的卫星,均由距离来决定,距离越近它越快。
距离越远越慢行,同步卫星速度定,定点赤道上空行。
三、牛顿运动定律
等ma,牛顿二定律,产生加速度,原因就是力。
合力与a同方向,速度变量定a向,a变小则u可大,只要a与u同向。
、T等力是视重,mg乘积是实重;超重失重视视重,其中不变是实重。
加速上升是超重,减速下降也超重;失重由加降减升定,完全失重视重零。
四、机械能与能量
1.确定状态找动能,分析过程找力功,正功负功加一起,动能增量与它同。
2.明确两态机械能,再看过程力做功,“重力”之外功为零,初态末态能量同。
3.确定状态找量能,再看过程力做功。有功就有能转变,初态末态能量同。
五、运动的描述
1.物体模型用质点,忽略形状和大小;地球公转当质点,地球自转要大小。
物体位置的变化,准确描述用位移,运动快慢S比t,a用Δv与t比。
2.运用一般公式法,平均速度是简法,中间时刻速度法,初速度零比例法。
再加几何图像法,求解运动好方法。自由落体是实例,初速为零a等g。
竖直上抛知初速,上升心有数,飞行时间上下回,整个过程匀减速。
中心时刻的速度,平均速度相等数;求加速度有好方,ΔS等aT平方。
3.速度决定物体动,速度加速度方向中,同向加速反向减,垂直拐弯莫前冲。
六、电场
1.库仑定律电荷力,万有引力引场力,好像是孪生兄弟,kQq与r平方比。
2.电荷周围有电场,F比q定义场强。KQ比r2点电荷,U比d是匀强电场。
电场强度是矢量,正电荷受力定方向。描绘电场用场线,疏密表示弱和强。
场能性质是电势,场线方向电势降。场力做功是qU,动能定理不能忘。
4.电场中有等势面,与它垂直画场线。方向由高指向低,面密线密是特点。
以上六部分内容是高中物理主要知识点了,每一章内容都不容忽视,所以同学们要足够重视,加强练习。
高二物理公式总结 篇10
【自由落体运动】
1.初速度Vo=02.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
【匀变速直线运动】
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
(4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。
高二物理公式总结 篇11
【自由落体运动】
1.初速度Vo=02.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh
注:
(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律;
(2)a=g=/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。
【匀变速直线运动】
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(Vt+Vo)/24.末速度Vt=Vo+at
5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/26.位移s=V平t=Vot+at2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0}
8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差}
9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=/h。
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
高二物理公式总结 篇12
1.库仑定律:F=kQ1Q2/r2(在真空中){F:点电荷间的作用力(N),k:静电力常量k=×109N?m2/C2,Q1、Q2:两点电荷的电量(C),r:两点电荷间的距离(m),方向在它们的连线上,作用力与反作用力,同种电荷互相排斥,异种电荷互相吸引}
2.两种电荷、电荷守恒定律、元电荷:(e=×10-19C);带电体电荷量等于元电荷的整数倍
3.电场强度:E=F/q(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理),q:检验电荷的电量(C)}
4.真空点(源)电荷形成的电场E=kQ/r2{r:源电荷到该位置的距离(m),Q:源电荷的电量}
5.电场力:F=qE{F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)}
6.匀强电场的场强E=UAB/d{UAB:AB两点间的电压(V),d:AB两点在场强方向的距离(m)}
7.电势与电势差:UAB=φA-φB,UAB=WAB/q=-ΔEAB/q
8.电场力做功:WAB=qUAB=Eqd{WAB:带电体由A到B时电场力所做的功(J),q:带电量(C),UAB:电场中A、B两点间的电势差(V)(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m)}
9.电场力做功与电势能变化ΔEAB=-WAB=-qUAB(电势能的增量等于电场力做功的负值)
10.电势能:EA=qφA{EA:带电体在A点的电势能(J),q:电量(C),φA:A点的电势(V)}
11.电势能的变化ΔEAB=EB-EA{带电体在电场中从A位置到B位置时电势能的差值}
12.电容C=Q/U(定义式,计算式){C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)}
13.平行板电容器的电容C=εS/4πkd(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)
14.带电粒子在电场中的加速(Vo=0):W=ΔEK或qU=mVt2/2,Vt=(2qU/m)1/2
15.带电粒子沿垂直电场方向以速度Vo进入匀强电场时的偏转(不考虑重力作用的情况下)
类平垂直电场方向:匀速直线运动L=Vot(在带等量异种电荷的`平行极板中:E=U/d)
抛运动平行电场方向:初速度为零的匀加速直线运动d=at2/2,a=F/m=qE/m
高二物理公式总结 篇13
一、力是物体间的相互作用
1、力的国际单位是牛顿,用N表示;
2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;
3、力的示意图:用一个带箭头的线段表示力的方向;
4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;
二、重力:由于地球对物体的吸引而使物体受到的力;
a、重力不是万有引力而是万有引力的一个分力;
b、重力的方向总是竖直向下的(垂直于水平面向下)
c、测量重力的仪器是弹簧秤;
d、重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;
三、弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;
a、产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;
b、弹力包括:支持力、压力、推力、拉力等等;
c、支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;
d、在弹性限度内弹力跟形变量成正比;F=Kx
四、摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;
a、产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;
b、摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;
c、滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;
d、静摩擦力的大小等于使物体发生相对运动趋势的外力;
五、合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;
a、合力与分力的作用效果相同;
b、合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;
c、合力大于或等于二分力之差,小于或等于二分力之和;
d、分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);
六、矢量
矢量:既有大小又有方向的物理量(如:力、位移、速度、加速度、动量、冲量)
标量:只有大小没有方向的物力量(如:时间、速率、功、功率、路程、电流、磁通量、能量)
高二物理公式总结 篇14
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
4.纯电阻电路中:由于I=U/R,W=Q,因此W=Q=UIt=I2Rt=U2t/R
5.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
6.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
7.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
8.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的.总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
高二物理公式总结 篇15
一、电路的组成:
1、定义:把电源、用电器、开关、导线连接起来组成的电流的路径。
2、各部分元件的作用:
(1)电源:提供电能的'装置;
(2)用电器:工作的设备;
(3)开关:控制用电器或用来接通或断开电路;
(4)导线:连接作用,形成让电荷移动的通路
二、电路的状态:通路、开路、短路
1、定义:
(1)通路:处处接通的电路;
(2)开路:断开的电路;
(3)短路:将导线直接连接在用电器或电源两端的电路。
2、正确理解通路、开路和短路
三、电路的基本连接方式:串联电路、并联电路
四、电路图(统一符号、横平竖直、简洁美观)
五、电工材料:导体、绝缘体
1、导体
(1)定义:容易导电的物体;
(2)导体导电的原因:导体中有自由移动的电荷;
2、绝缘体
(1)定义:不容易导电的物体;
(2)原因:缺少自由移动的电荷
六、电流的形成
1、电流是电荷定向移动形成的;
2、形成电流的电荷有:正电荷、负电荷。酸碱盐的水溶液中是正负离子,金属导体中是自由电子。
七、电流的方向
1、规定:正电荷定向移动的方向为电流的方向;
2、电流的方向跟负电荷定向移动的方向相反;
3、在电源外部,电流的方向是从电源的正极流向负极。
八、电流的效应:热效应、化学效应、磁效应
九、电流的大小:I=Q/t
十、电流的测量
1、单位及其换算:主单位安(A),常用单位毫安(mA)、微安(μA)
2、测量工具及其使用方法:
(1)电流表;
(2)量程;
(3)读数方法;
(4)电流表的使用规则。
十一、电流的规律:
(1)串联电路:I=I1+I2;
(2)并联电路:I=I1+I2
【方法提示】
1、电流表的使用可总结为(一查两确认,两要两不要)
(1)一查:检查指针是否指在零刻度线上;
(2)两确认:①确认所选量程。②确认每个大格和每个小格表示的电流值。两要:一要让电流表串联在被测电路中;二要让电流从“+”接线柱流入,从“—”接线柱流出;③两不要:一不要让电流超过所选量程,二不要不经过用电器直接接在电源上。
在事先不知道电流的大小时,可以用试触法选择合适的量程。
2、根据串并联电路的特点求解有关问题的电路
(1)分析电路结构,识别各电路元件间的串联或并联;
(2)判断电流表测量的是哪段电路中的电流;
(3)根据串并联电路中的电流特点,按照题目给定的条件,求出待求的电流。
高二物理公式总结 篇16
电流强度:I=q/t {I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
电阻、电阻定律:R=ρL/S {ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
闭合电路欧姆定律:I =E /(r+R)或E=Ir + IR也可以是E =U内+ U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
电功与电功率:W=UIt,P=UI {W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
焦耳定律:Q=I2Rt {Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
纯电阻电路中:由于I=U/R , W=Q,因此W=Q=UIt=I2Rt=U2t/R
电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总
{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3 I并=I1+I2+I3+
电压关系U总=U1+U2+U3+ U总=U1=U2=U3
功率分配P总=P1+P2+P3+ P总=P1+P2+P3+
欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E /(r + Rg + Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E /(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、短接欧姆调零、测量读数
{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中
央附近,每次换挡要重新短接欧姆调零。
伏安法测电阻
电流表内接法:电流表外接法:
电压表示数:U=UR+UA电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的.测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)
选用电路条件Rx>>RA [或Rx>(RARV)1/2]选用电路条件Rx
滑动变阻器在电路中的限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp > Rx便于调节电压的选择条件Rp
注:(1)单位换算:1A=103mA=106μA; 1kV=103V=106mA; 1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串-电阻大于任何一个分电阻,并-电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系/半导体及其应用/超导及其应用。
高二物理公式总结 篇17
太阳耀斑是发生在太阳大气局部区域的一种最剧烈的爆发现象,在短时间内释放大量能量,引起局部区域瞬时加热,向外发射各种电磁辐射,并伴随粒子辐射突然增强。
1、影响
耀斑对地球空间环境造成很大影响。太阳色球层中一声爆炸,地球大气层即刻出现缭绕余音。耀斑爆发时,发出大量的高能粒子到达地球轨道附近时,将会严重危及宇宙飞行器内的宇航员和仪器的安全。当耀斑辐射来到地球附近时,与大气分子发生剧烈碰撞,破坏电离层,使它失去反射无线电电波的功能。无线电通信尤其是短波通信,以及电视台、电台广播,会受到干扰甚至中断。耀斑发射的高能带电粒子流与地球高层大气作用,产生极光,并干扰地球磁场而引起磁暴。
此外,耀斑对气象和水文等方面也有着不同程度的直接或间接影响。正因为如此,人们对耀斑爆发的探测和预报的关切程度与日俱增,正在努力揭开耀斑迷宫的奥秘。
2、耀斑的成因
太阳大气中充满着磁场,磁场结构越复杂,越容易储存更多的磁能。
当储存在磁场中的磁能过多时,会通过太阳爆发活动释放能量,太阳耀斑即是太阳爆发活动的一种形式。
长期的观测发现,大多数耀斑都发生在黑子群的上空,且黑子群的结构和磁场极性越复杂,发生大耀斑的几率越高。平均而言,一个正常发展的黑子群几乎几小时就会产生一个耀斑,不过真正对地球有强烈影响的耀斑则很少。
高二物理公式总结 篇18
1、电视
简单地说:电视信号是电视台先把影像信号转变为可以发射的电信号,发射出去后被接收的电信号通过还原,被还原为光的图象重现荧光屏。电子束把一幅图象按照各点的明暗情况,逐点变为强弱不同的信号电流,通过天线把带有图象信号的电磁波发射出去。
2、雷达工作原理
利用发射与接收之间的时间差,计算出物体的距离。
3、手机
在待机状态下,手机不断的发射电磁波,与周围环境交换信息。手机在建立连接的过程中发射的电磁波特别强。
高二物理公式总结 篇19
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3
10.欧姆表测电阻
(1)电路组成
(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得Ig=E/(r+Rg+Ro)接入被测电阻Rx后通过电表的电流为Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:电压表示数:U=UR+UA
电流表外接法:电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真;
Rx的测量值=U/I=UR/(IR+IV)=RVRx(RV+R)
选用电路条件Rx>RA[或Rx>(RARV)1/2]
选用电路条件Rx
12.滑动变阻器在电路中的限流接法与分压接法限流接法:电压调节范围小,电路简单,功耗小便于调节电压的选择条件Rp>Rx电压调节范围大,电路复杂,功耗较大便于调节电压的选择条件Rp。
注:
(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);
高二物理公式总结 篇20
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
高二物理公式总结 篇21
电流强度:I=q/t {I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
欧姆定律:I=U/R {I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
电阻、电阻定律:R=ρL/S {ρ:电阻率(Ω?m),L:导体的长度(m),S:导体横截面积(m2)}
闭合电路欧姆定律:I =E /(r+R)或E=Ir + IR也可以是E =U内+ U外
{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
电功与电功率:W=UIt,P=UI {W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
焦耳定律:Q=I2Rt {Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
纯电阻电路中:由于I=U/R , W=Q,因此W=Q=UIt=I2Rt=U2t/R
电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总
{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系R串=R1+R2+R3+ 1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3 I并=I1+I2+I3+
电压关系U总=U1+U2+U3+ U总=U1=U2=U3
功率分配P总=P1+P2+P3+ P总=P1+P2+P3+
欧姆表测电阻
(1)电路组成(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E /(r + Rg + Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E /(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、短接欧姆调零、测量读数
{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中
央附近,每次换挡要重新短接欧姆调零。
伏安法测电阻
电流表内接法:电流表外接法:
电压表示数:U=UR+UA电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真Rx的测量值=U/I=UR/(IR+IV)=RVRx/(RV+R)
选用电路条件Rx>>RA [或Rx>(RARV)1/2]选用电路条件Rx
滑动变阻器在电路中的.限流接法与分压接法
限流接法
电压调节范围小,电路简单,功耗小电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp > Rx便于调节电压的选择条件Rp
注:(1)单位换算:1A=103mA=106μA; 1kV=103V=106mA; 1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串-电阻大于任何一个分电阻,并-电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);
高二物理公式总结 篇22
1.定理的表述教材上欧姆定律是这样表述的:导体中的电流,跟导体两端的电压成正比,跟导体的电阻成反比。
2.成立的条件从教材对定理的描述看,欧姆定律实际是对两个实验结论的综合:一是“导体的电流跟这段导体两端的电压成正比”,这一结论成立的条件是导体的电阻不变;二是“导体中的电流跟这段导体的电阻成反比”,这一结论成立的条件是保持导体两端的电压不变。
3.注意的事项该定理中的各个物理量是同一导体或同一段电路上的同一时刻的对应值。在实际电路中,往往有几个导体,即使是同一导体,在不同时刻的I、U、R值也不相同,因此在应用欧姆定律解题时应对同一导体同一时刻的I、U、R标上同一的脚码,以避免张冠李戴。另外,还需注意该定理中各物理量的单位统一用国际单位,这样才能求得正确的结果。
4.公式的变形对于欧姆定律的变形R=U/I,有些同学单纯的从数学角度来理解为“一段电路的电阻跟这段电路两端的电压成正比,跟这段电路的电流成反比”,这显然是错误的。事实上,如果这段导体两端的电压变化了几倍,其电流必然也随着变化几倍,所以它们的比值R必然也是一个定值。所以R=U/I只是电阻大小的一个计算式,而不是决定式。
定律的应用欧姆定律的应用有三个:一是根据I=U/R计算通过导体的电流,二是根据R=U/I计算或测量导体的电阻,三是根据U=IR计算导体或电路两端的电压。
高二物理公式总结 篇23
一、力:力是物体间的相互作用。
1、力的国际单位是牛顿,用N表示;
2、力的图示:用一条带箭头的有向线段表示力的大小、方向、作用点;
3、力的示意图:用一个带箭头的线段表示力的方向;
4、力按照性质可分为:重力、弹力、摩擦力、分子力、电场力、磁场力、核力等等;
(1)重力:由于地球对物体的吸引而使物体受到的力;
(A)重力不是万有引力而是万有引力的一个分力;
(B)重力的方向总是竖直向下的(垂直于水平面向下)
(C)测量重力的仪器是弹簧秤;
(D)重心是物体各部分受到重力的等效作用点,只有具有规则几何外形、质量分布均匀的物体其重心才是其几何中心;
(2)弹力:发生形变的物体为了恢复形变而对跟它接触的物体产生的作用力;
(A)产生弹力的条件:二物体接触、且有形变;施力物体发生形变产生弹力;
(B)弹力包括:支持力、压力、推力、拉力等等;
(C)支持力(压力)的方向总是垂直于接触面并指向被支持或被压的物体;拉力的方向总是沿着绳子的收缩方向;
(D)在弹性限度内弹力跟形变量成正比;F=Kx
(3)摩擦力:两个相互接触的物体发生相对运动或相对运动趋势时,受到阻碍物体相对运动的力,叫摩擦力;
(A)产生磨擦力的条件:物体接触、表面粗糙、有挤压、有相对运动或相对运动趋势;有弹力不一定有摩擦力,但有摩擦力二物间就一定有弹力;
(B)摩擦力的方向和物体相对运动(或相对运动趋势)方向相反;
(C)滑动摩擦力的大小F滑=μFN压力的大小不一定等于物体的重力;
(D)静摩擦力的大小等于使物体发生相对运动趋势的外力;
(4)合力、分力:如果物体受到几个力的作用效果和一个力的作用效果相同,则这个力叫那几个力的合力,那几个力叫这个力的分力;
(A)合力与分力的作用效果相同;
(B)合力与分力之间遵守平行四边形定则:用两条表示力的线段为临边作平行四边形,则这两边所夹的对角线就表示二力的合力;
(C)合力大于或等于二分力之差,小于或等于二分力之和;
(D)分解力时,通常把力按其作用效果进行分解;或把力沿物体运动(或运动趋势)方向、及其垂直方向进行分解;(力的正交分解法);
二、矢量:既有大小又有方向的物理量。
如:力、位移、速度、加速度、动量、冲量
标量:只有大小没有方向的物力量如:时间、速率、功、功率、路程、电流、磁通量、能量
三、物体处于平衡状态(静止、匀速直线运动状态)的条件:物体所受合外力等于零;
1、在三个共点力作用下的物体处于平衡状态者任意两个力的合力与第三个力等大反向;
2、在N个共点力作用下物体处于`平衡状态,则任意第N个力与(N-1)个力的合力等大反向;
3、处于平衡状态的物体在任意两个相互垂直方向的合力为零。
高二物理公式总结 篇24
1、多普勒效应:由于波源和观察者之间有相对运动,使观察者感到频率变化的现象叫做多普勒效应。是奥地利物理学家多普勒在1842年发现的。
2、多普勒效应的成因:声源完成一次全振动,向外发出一个波长的波,频率表示单位时间内完成的全振动的次数,因此波源的频率等于单位时间内波源发出的完全波的个数,而观察者听到的声音的音调,是由观察者接受到的频率,即单位时间接收到的完全波的个数决定的。
3、多普勒效应是波动过程共有的特征,不仅机械波,电磁波和光波也会发生多普勒效应。
4、多普勒效应的应用:
①现代医学上使用的胎心检测器、血流测定仪等有许多都是根据这种原理制成。
②根据汽笛声判断火车的运动方向和快慢,以炮弹飞行的尖叫声判断炮弹的飞行方向等。
③红移现象:在20世纪初,科学家们发现许多星系的谱线有“红移现象”,所谓“红移现象”,就是整个光谱结构向光谱红色的一端偏移,这种现象可以用多普勒效应加以解释:
由于星系远离我们运动,接收到的星光的频率变小,谱线就向频率变小(即波长变大)的红端移动。科学家从红移的大小还可以算出这种远离运动的速度。这种现象,是证明宇宙在膨胀的一个有力证据。
高二物理公式总结 篇25
1.电流强度:I=q/t{I:电流强度(A),q:在时间t内通过导体横载面的电量(C),t:时间(s)}
2.欧姆定律:I=U/R{I:导体电流强度(A),U:导体两端电压(V),R:导体阻值(Ω)}
3.电阻、电阻定律:R=ρL/S{ρ:电阻(Ω/m),L:导体的长度(m),S:导体横截面积(m2)}
4.闭合电路欧姆定律:I=E/(r+R)或E=Ir+IR也可以是E=U内+U外{I:电路中的总电流(A),E:电源电动势(V),R:外电路电阻(Ω),r:电源内阻(Ω)}
5.电功与电功率:W=UIt,P=UI{W:电功(J),U:电压(V),I:电流(A),t:时间(s),P:电功率(W)}
6.焦耳定律:Q=I2Rt{Q:电热(J),I:通过导体的电流(A),R:导体的电阻值(Ω),t:通电时间(s)}
7.纯电阻电路中:由于I=U/R,W=Q,因三此W=Q=UIt=I2Rt=U2t/R
8.电源总动率、电源输出功率、电源效率:P总=IE,P出=IU,η=P出/P总{I:电路总电流(A),E:电源电动势(V),U:路端电压(V),η:电源效率}
9.电路的串/并联串联电路(P、U与R成正比)并联电路(P、I与R成反比)
电阻关系(串同并反)R串=R1+R2+R3+1/R并=1/R1+1/R2+1/R3+
电流关系I总=I1=I2=I3I并=I1+I2+I3+
电压关系U总=U1+U2+U3+U总=U1=U2=U3
功率分配P总=P1+P2+P3+P总=P1+P2+P3+
10.欧姆表测电阻
(1)电路组成
(2)测量原理
两表笔短接后,调节Ro使电表指针满偏,得
Ig=E/(r+Rg+Ro)
接入被测电阻Rx后通过电表的电流为
Ix=E/(r+Rg+Ro+Rx)=E/(R中+Rx)
由于Ix与Rx对应,因此可指示被测电阻大小
(3)使用方法:机械调零、选择量程、欧姆调零、测量读数{注意挡位(倍率)}、拨off挡。
(4)注意:测量电阻时,要与原电路断开,选择量程使指针在中央附近,每次换挡要重新短接欧姆调零。
11.伏安法测电阻
电流表内接法:电压表示数:U=UR+UA
电流表外接法:电流表示数:I=IR+IV
Rx的测量值=U/I=(UA+UR)/IR=RA+Rx>R真;
Rx的测量值=U/I=UR/(IR+IV)=RVRx(RV+R)
选用电路条件Rx>RA[或Rx>(RARV)1/2]
选用电路条件Rx
12.滑动变阻器在电路中的限流接法与分压接法
限流接法:电压调节范围小,电路简单,功耗小
便于调节电压的选择条件Rp>Rx
电压调节范围大,电路复杂,功耗较大
便于调节电压的选择条件Rp
注:
(1)单位换算:1A=103mA=106μA;1kV=103V=106mA;1MΩ=103kΩ=106Ω
(2)各种材料的电阻率都随温度的变化而变化,金属电阻率随温度升高而增大;
(3)串联总电阻大于任何一个分电阻,并联总电阻小于任何一个分电阻;
(4)当电源有内阻时,外电路电阻增大时,总电流减小,路端电压增大;
(5)当外电路电阻等于电源电阻时,电源输出功率,此时的输出功率为E2/(2r);
(6)其它相关内容:电阻率与温度的关系半导体及其应用超导及其应用〔见第二册P127〕。
高二物理公式总结 篇26
1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止
2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}
3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}
4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}
5.超重:FN>G,失重:FN
6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子
注:
平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。
高二物理公式总结 篇27
【磁场】
1.磁感应强度是用来表示磁场的强弱和方向的物理量,是矢量,单位T),1T=1N/A?m
2.安培力F=BIL;(注:L⊥B){B:磁感应强度(T),F:安培力(F),I:电流强度(A),L:导线长度(m)}
3.洛仑兹力f=qVB(注V⊥B);质谱仪{f:洛仑兹力(N),q:带电粒子电量(C),V:带电粒子速度(m/s)}
4.在重力忽略不计(不考虑重力)的情况下,带电粒子进入磁场的运动情况(掌握两种):
(1)带电粒子沿平行磁场方向进入磁场:不受洛仑兹力的作用,做匀速直线运动V=V0
(2)带电粒子沿垂直磁场方向进入磁场:做匀速圆周运动,规律如下a)F向=f洛=mV2/r=mω2r=mr(2π/T)2=qVB
r=mV/qB;T=2πm/qB;(b)运动周期与圆周运动的半径和线速度无关,洛仑兹力对带电粒子不做功(任何情况下);
解题关键:画轨迹、找圆心、定半径、圆心角(=二倍弦切角)。
注:(1)安培力和洛仑兹力的方向均可由左手定则判定,只是洛仑兹力要注意带电粒子的.正负;
(2)磁感线的特点及其常见磁场的磁感线分布要掌握;
(3)其它相关内容:地磁场/磁电式电表原理/回旋加速器/磁性材料
高二物理公式总结 篇28
匀速直线运动的位移公式:x=vt
匀变速直线运动的速度公式:v=v0+at
匀变速直线运动的位移公式:x=v0t+at2/2
向心加速度的关系:a=2ra=v2/ra=42r/T2
力对物体做功的计算式:W=FL
牛顿第二定律:F=ma
曲线运动的线速度:v=s/t
曲线运动的角速度:=/t
线速度和角速度的关系:v=r
周期和频率的关系:Tf=1
功率的计算式:P=W/t
动能定理:W=mvt2/2-mv02/2
重力势能的.计算式:Ep=mgh
高中物理会考公式(常用版)
机械能守恒定律:mgh1+mv12/2=mgh2+mv22/2
库仑定律的数学表达式:F=kQq/r2
电场强度的定义式:E=F/q
电势差的定义式:U=W/q
欧姆定律:I=U/R
电功率的计算:P=UI
焦耳定律:Q=I2Rt
磁感应强度的定义式:B=F/IL
安培力的计算式:F=BIL
洛伦兹力的计算式:f=qvb
法拉第电磁感应定律:E=ф/t
导体切割磁感线产生的感应电动势:E=Blv
高二物理公式总结 篇29
1)匀变速直线运动
1.平均速度V平=s/t(定义式)2.有用推论Vt2-Vo2=2as
3.中间时刻速度Vt/2=V平=(VtVo)/24.末速度Vt=Voat
5.中间位置速度Vs/2=[(Vo2Vt2)/2]1/26.位移s=V平t=Votat2/2=Vt/2t
7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a0;反向则a0}
8.实验用推论s=aT2{s为连续相邻相等时间(T)内位移之差}
注:
(1)平均速度是矢量;
(2)物体速度大,加速度不一定大;
(3)a=(Vt-Vo)/t只是量度式,不是决定式;
2)自由落体运动
1.初速度Vo=02.末速度Vt=gt
3.下落高度h=gt2/2(从Vo位置向下计算)4.推论Vt2=2gh
(3)竖直上抛运动
1.位移s=Vot-gt2/22.末速度Vt=Vo-gt(g=/s210m/s2)
3.有用推论Vt2-Vo2=-2gs4.上升高度Hm=Vo2/2g(抛出点算起)
5.往返时间t=2Vo/g(从抛出落回原位置的时间)
1)平抛运动
1.水平方向速度:Vx=Vo2.竖直方向速度:Vy=gt
3.水平方向位移:x=Vot4.竖直方向位移:y=gt2/2
5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2)
6.合速度Vt=(Vx2Vy2)1/2=[Vo2(gt)2]1/2
合速度方向与水平夹角:tg=Vy/Vx=gt/V0
7.合位移:s=(x2y2)1/2,
位移方向与水平夹角:tg=y/x=gt/2Vo
8.水平方向加速度:ax=0;竖直方向加速度:ay=g
下一篇:教练总结【范例5篇】