高一物理必修一实用知识点总结整理通用4篇

网友 分享 时间:

【导言】此例“高一物理必修一实用知识点总结整理通用4篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

高一物理必修一 知识点【第一篇】

一、质点的运动(1)------直线运动

1)匀变速直线运动

1.平均速度V平=S/t (定义式) 2.有用推论Vt^2 –Vo^2=2as

3.中间时刻速度 Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at

5.中间位置速度Vs/2=[(Vo^2 +Vt^2)/2]1/2 6.位移S= V平t=Vot + at^2/2=Vt/2t

7.加速度a=(Vt-Vo)/t 以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0

8.实验用推论ΔS=aT^2 ΔS为相邻连续相等时间(T)内位移之差

9.主要物理量及单位:初速(Vo):m/s

加速度(a):m/s^2 末速度(Vt):m/s

时间(t):秒(s) 位移(S):米(m) 路程:米 速度单位换算:1m/s=/h

注:(1)平均速度是矢量。(2)物体速度大,加速度不一定大。(3)a=(Vt-Vo)/t只是量度式,不是决定式。(4)其它相关内容:质点/位移和路程/s--t图/v--t图/速度与速率/

2) 自由落体

1.初速度Vo=0

2.末速度Vt=gt

3.下落高度h=gt^2/2(从Vo位置向下计算) 4.推论Vt^2=2gh

注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速度直线运动规律。

(2)a=g= m/s^2≈10m/s^2 重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下。

3) 竖直上抛

1.位移S=Vot- gt^2/2 2.末速度Vt= Vo- gt (g=≈10m/s2 )

3.有用推论Vt^2 –Vo^2=-2gS 4.上升高度Hm=Vo^2/2g (抛出点算起)

5.往返时间t=2Vo/g (从抛出落回原位置的时间)

注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值。(2)分段处理:向上为匀减速运动,向下为自由落体运动,具有对称性。(3)上升与下落过程具有对称性,如在同点速度等值反向等。

二、质点的运动(2)----曲线运动 万有引力

1)平抛运动

1.水平方向速度Vx= Vo 2.竖直方向速度Vy=gt

3.水平方向位移Sx= Vot 4.竖直方向位移(Sy)=gt^2/2

5.运动时间t=(2Sy/g)1/2 (通常又表示为(2h/g)1/2)

6.合速度Vt=(Vx^2+Vy^2)1/2=[Vo^2+(gt)^2]1/2

合速度方向与水平夹角β: tgβ=Vy/Vx=gt/Vo

7.合位移S=(Sx^2+ Sy^2)1/2 ,

位移方向与水平夹角α: tgα=Sy/Sx=gt/2Vo

注:(1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运动与竖直方向的自由落体运动的合成。(2)运动时间由下落高度h(Sy)决定与水平抛出速度无关。(3)θ与β的关系为tgβ=2tgα 。(4)在平抛运动中时间t是解题关键。(5)曲线运动的物体必有加速度,当速度方向与所受合力(加速度)方向不在同一直线上时物体做曲线运动。

2)匀速圆周运动

1.线速度V=s/t=2πR/T 2.角速度ω=Φ/t=2π/T=2πf

3.向心加速度a=V^2/R=ω^2R=(2π/T)^2R 4.向心力F心=Mv^2/R=mω^2*R=m(2π/T)^2*R

5.周期与频率T=1/f 6.角速度与线速度的关系V=ωR

7.角速度与转速的关系ω=2πn (此处频率与转速意义相同)

8.主要物理量及单位: 弧长(S):米(m) 角度(Φ):弧度(rad) 频率(f):赫(Hz)

周期(T):秒(s) 转速(n):r/s 半径(R):米(m) 线速度(V):m/s

角速度(ω):rad/s 向心加速度:m/s2

注:(1)向心力可以由具体某个力提供,也可以由合力提供,还可以由分力提供,方向始终与速度方向垂直。(2)做匀速度圆周运动的物体,其向心力等于合力,并且向心力只改变速度的方向,不改变速度的大小,因此物体的动能保持不变,但动量不断改变。

3)万有引力

1.开普勒第三定律T2/R3=K(=4π^2/GM) R:轨道半径 T :周期 K:常量(与行星质量无关)

2.万有引力定律F=Gm1m2/r^2 G=×10^-11N?m^2/kg^2方向在它们的连线上

3.天体上的重力和重力加速度GMm/R^2=mg g=GM/R^2 R:天体半径(m)

4.卫星绕行速度、角速度、周期 V=(GM/R)1/2 ω=(GM/R^3)1/2 T=2π(R^3/GM)1/2

5.第一(二、三)宇宙速度V1=(g地r地)1/2=/s V2=/s V3=/s

6.地球同步卫星GMm/(R+h)^2=m*4π^2(R+h)/T^2 h≈ km h:距地球表面的高度

注:(1)天体运动所需的向心力由万有引力提供,F心=F万。(2)应用万有引力定律可估算天体的质量密度等。(3)地球同步卫星只能运行于赤道上空,运行周期和地球自转周期相同。(4)卫星轨道半径变小时,势能变小、动能变大、速度变大、周期变小。(5)地球卫星的环绕速度和最小发射速度均为/S。

机械能

1.功

(1)做功的两个条件: 作用在物体上的力。

物体在里的方向上通过的距离。

(2)功的大小: W=Fscosa 功是标量 功的单位:焦耳(J)

1J=1N*m

当 0<= a <派/2 w>0 F做正功 F是动力

当 a=派/2 w=0 (cos派/2=0) F不作功

当 派/2<= a <派 W<0 F做负功 F是阻力

(3)总功的求法:

W总=W1+W2+W3……Wn

W总=F合Scosa

2.功率

(1) 定义:功跟完成这些功所用时间的比值。

P=W/t 功率是标量 功率单位:瓦特(w)

此公式求的是平均功率

1w=1J/s 1000w=1kw

(2) 功率的另一个表达式: P=Fvcosa

当F与v方向相同时, P=Fv. (此时cos0度=1)

此公式即可求平均功率,也可求瞬时功率

1)平均功率: 当v为平均速度时

2)瞬时功率: 当v为t时刻的瞬时速度

(3) 额定功率: 指机器正常工作时输出功率

实际功率: 指机器在实际工作中的输出功率

正常工作时: 实际功率≤额定功率

(4) 机车运动问题(前提:阻力f恒定)

P=Fv F=ma+f (由牛顿第二定律得)

汽车启动有两种模式

1) 汽车以恒定功率启动 (a在减小,一直到0)

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有值

2) 汽车以恒定加速度前进(a开始恒定,在逐渐减小到0)

a恒定 F不变(F=ma+f) V在增加 P实逐渐增加

此时的P为额定功率 即P一定

P恒定 v在增加 F在减小 尤F=ma+f

当F减小=f时 v此时有值

3.功和能

(1) 功和能的关系: 做功的过程就是能量转化的过程

功是能量转化的量度

(2) 功和能的区别: 能是物体运动状态决定的物理量,即过程量

功是物体状态变化过程有关的物理量,即状态量

这是功和能的根本区别。

4.动能。动能定理

(1) 动能定义:物体由于运动而具有的能量。 用Ek表示

表达式 Ek=1/2mv^2 能是标量 也是过程量

单位:焦耳(J) 1kg*m^2/s^2 = 1J

(2) 动能定理内容:合外力做的功等于物体动能的变化

表达式 W合=ΔEk=1/2mv^2-1/2mv0^2

适用范围:恒力做功,变力做功,分段做功,全程做功

5.重力势能

(1) 定义:物体由于被举高而具有的能量。 用Ep表示

表达式 Ep=mgh 是标量 单位:焦耳(J)

(2) 重力做功和重力势能的关系

W重=-ΔEp

重力势能的变化由重力做功来量度

(3) 重力做功的特点:只和初末位置有关,跟物体运动路径无关

重力势能是相对性的,和参考平面有关,一般以地面为参考平面

重力势能的变化是绝对的,和参考平面无关

(4) 弹性势能:物体由于形变而具有的能量

弹性势能存在于发生弹性形变的物体中,跟形变的大小有关

弹性势能的变化由弹力做功来量度

6.机械能守恒定律

(1) 机械能:动能,重力势能,弹性势能的总称

总机械能:E=Ek+Ep 是标量 也具有相对性

机械能的变化,等于非重力做功 (比如阻力做的功)

ΔE=W非重

机械能之间可以相互转化

(2) 机械能守恒定律: 只有重力做功的情况下,物体的动能和重力势能

发生相互转化,但机械能保持不变

表达式: Ek1+Ep1=Ek2+Ep2 成立条件:只有重力做功

高一物理必修一知识点总结【第二篇】

匀变速直线运动的规律及其应用

1、定义:在任意相等的时间内速度的变化都相等的直线运动

2、匀变速直线运动的基本规律

(1)任意两个连续相等的时间T内的位移之差为恒量

(2)某段时间内时间中点瞬时速度等于这段时间内的平均速度

4、初速度为零的匀加速直线运动的比例式(2)初速度为零的匀变速直线运动中的几个重要结论

①1T末,2T末,3T末……瞬时速度之比为:

v1∶v2∶v3∶……∶vn=1∶2∶3∶……∶n

②1T内,2T内,3T内……位移之比为:

x1∶x2∶x3∶……∶xn=1∶3∶5∶……∶(2n—1)

③第一个T内,第二个T内,第三个T内……第n个T内的位移之比为:

xⅠ∶xⅡ∶xⅢ∶……∶xN=1∶4∶9∶……∶n2

④通过连续相等的位移所用时间之比为:

易错现象:

1、在一系列的公式中,不注意的v、a正、负。

2、纸带的处理,是这部分的重点和难点,也是易错问题。

3、滥用初速度为零的匀加速直线运动的特殊公式。

自由落体运动,竖直上抛运动

1、自由落体运动:只在重力作用下由静止开始的下落运动,因为忽略了空气的阻力,所以是一种理想的运动,是初速度为零、加速度为g的匀加速直线运动。

2、自由落体运动规律

3、竖直上抛运动:

可以看作是初速度为v0,加速度方向与v0方向相反,大小等于的g的匀减速直线运动,可以把它分为向上和向下两个过程来处理。

(2)竖直上抛运动的对称性

物体以初速度v0竖直上抛,A、B为途中的任意两点,C为点,则:

(1)时间对称性

物体上升过程中从A→C所用时间tAC和下降过程中从C→A所用时间tCA相等,同理tAB=tBA。

(2)速度对称性

物体上升过程经过A点的速度与下降过程经过A点的速度大小相等。

[关键一点]

在竖直上抛运动中,当物体经过抛出点上方某一位置时,可能处于上升阶段,也可能处于下降阶段,因此这类问题可能造成时间多解或者速度多解。

易错现象

1、忽略自由落体运动必须同时具备仅受重力和初速度为零

2、忽略竖直上抛运动中的多解

3、小球或杆过某一位置或圆筒的问题

运动的图象运动的相遇和追及问题

1、图象:

图像在中学物理中占有举足轻重的地位,其优点是可以形象直观地反映物理量间的函数关系。位移和速度都是时间的函数,在描述运动规律时,常用x—t图象和v—t图象。

(1)x—t图象

①物理意义:反映了做直线运动的物体的位移随时间变化的规律。②表示物体处于静止状态

②图线斜率的意义

①图线上某点切线的斜率的大小表示物体速度的大小。

②图线上某点切线的斜率的正负表示物体方向。

③两种特殊的x—t图象

(1)匀速直线运动的x—t图象是一条过原点的直线。

(2)若x—t图象是一条平行于时间轴的直线,则表示物体处

于静止状态

(2)v—t图象

①物理意义:反映了做直线运动的物体的速度随时间变化

的规律。

②图线斜率的意义

a图线上某点切线的斜率的大小表示物体运动的加速度的大小。

b图线上某点切线的斜率的正负表示加速度的方向。

③图象与坐标轴围成的“面积”的意义

a图象与坐标轴围成的面积的数值表示相应时间内的位移的大小。

b若此面积在时间轴的上方,表示这段时间内的位移方向为正方向;若此面积在时间轴的下方,表示这段时间内的位移方向为负方向。

③常见的两种图象形式

(1)匀速直线运动的v—t图象是与横轴平行的直线。

(2)匀变速直线运动的v—t图象是一条倾斜的直线。

2、相遇和追及问题:

这类问题的关键是两物体在运动过程中,速度关系和位移关系,要注意寻找问题中隐含的临界条件。

1、混淆x—t图象和v—t图象,不能区分它们的物理意义

2、不能正确计算图线的斜率、面积

3、在处理汽车刹车、飞机降落等实际问题时注意,汽车、飞机停止后不会后退

高一物理必修一知识点总结【第三篇】

匀变速直线运动的研究

匀变速直线运动是运动学中最典型的也是最简单的理想化的运动形式,学习本章的有关知识对于运动学将会有更深入地了解,难点在于速度、时间以及位移这三者物理量之间的关系。要熟练掌握有关的知识,灵活的加以运用。最后,本章末讲学习一种有代表性的匀变速直线运动形式:自由落体运动。

考试的要求:

Ⅰ、对所学知识要知道其含义,并能在有关的问题中识别并直接运用,相当于课程标准中的“了解”和“认识”。

Ⅱ、能够理解所学知识的确切含义以及和其他知识的联系,能够解释,在实际问题的分析、综合、推理、和判断等过程中加以运用,相当于课程标准的“理解”,“应用”。

要求Ⅱ:匀速直线运动,匀变速直线运动,速度与时间的关系,位移与时间的关系,位移与速度的关系,v-t图的物理意义以及图像上的有关信息。

高一物理必修一知识点总结【第四篇】

第一节探究形变与弹力的关系

认识形变

1.物体形状回体积发生变化简称形变。

2.分类:按形式分:压缩形变、拉伸形变、弯曲形变、扭曲形变。

按效果分:弹性形变、塑性形变

3.弹力有无的判断:1)定义法(产生条件)

2)搬移法:假设其中某一个弹力不存在,然后分析其状态是否有变化。

3)假设法:假设其中某一个弹力存在,然后分析其状态是否有变化。

弹性与弹性限度

1.物体具有恢复原状的性质称为弹性。

2.撤去外力后,物体能完全恢复原状的形变,称为弹性形变。

3.如果外力过大,撤去外力后,物体的形状不能完全恢复,这种现象为超过了物体的弹性限度,发生了塑性形变。

探究弹力

1.产生形变的物体由于要恢复原状,会对与它接触的物体产生力的作用,这种力称为弹力。

2.弹力方向垂直于两物体的接触面,与引起形变的外力方向相反,与恢复方向相同。

绳子弹力沿绳的收缩方向;铰链弹力沿杆方向;硬杆弹力可不沿杆方向。

弹力的作用线总是通过两物体的接触点并沿其接触点公共切面的垂直方向。

3.在弹性限度内,弹簧弹力F的大小与弹簧的伸长或缩短量x成正比,即胡克定律。

F=kx

4.上式的k称为弹簧的劲度系数(倔强系数),反映了弹簧发生形变的难易程度。

5.弹簧的串、并联:串联:1/k=1/k1+1/k2并联:k=k1+k2

35 1795257
");