初二上册数学知识点总结实用3篇

网友 分享 时间:

【导言】此例“初二上册数学知识点总结实用3篇”的文档资料由阿拉题库网友为您分享整理,以供您学习参考之用,希望这篇资料对您有所帮助,喜欢就复制下载支持吧!

八年级上册数学知识点1

一、函数:

一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。

二、自变量取值范围

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。

三、函数的三种表示法及其优缺点

(1)关系式(解析)法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图象法

用图象表示函数关系的方法叫做图象法。

四、由函数关系式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

五、正比例函数和一次函数

1、正比例函数和一次函数的概念

一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。

特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。

2、一次函数的图像:所有一次函数的图像都是一条直线

3、一次函数、正比例函数图像的主要特征:一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。

第七章知识点

1、二元一次方程

含有两个未知数,并且所含未知数的项的次数都是1的整式方程叫做二元一次方程。

2、二元一次方程的解

适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

3、二元一次方程组

含有两个未知数的两个一次方程所组成的一组方程,叫做二元一次方程组。

4、二元一次方程组的解

二元一次方程组中各个方程的。公共解,叫做这个二元一次方程组的解。

5、二元一次方程组的解法

(1)代入(消元)法(2)加减(消元)法

第八章知识点

1、刻画数据的集中趋势(平均水平)的量:平均数、众数、中位数

2、平均数

(2)加权平均数:

3、众数

一组数据中出现次数最多的那个数据叫做这组数据的众数。

4、中位数

一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。

数学八年级上册知识点2

1 全等三角形的对应边、对应角相等

2边角边公理(SAS) 有两边和它们的夹角对应相等的两个三角形全等

3 角边角公理( ASA)有两角和它们的夹边对应相等的两个三角形全等

4 推论(AAS) 有两角和其中一角的对边对应相等的两个三角形全等

5 边边边公理(SSS) 有三边对应相等的两个三角形全等

6 斜边、直角边公理(HL) 有斜边和一条直角边对应相等的两个直角三角形全等

7 定理1 在角的平分线上的点到这个角的两边的距离相等

8 定理2 到一个角的两边的距离相同的点,在这个角的平分线上

9 角的平分线是到角的两边距离相等的所有点的集合

10 等腰三角形的性质定理 等腰三角形的两个底角相等 (即等边对等角)

11 推论1 等腰三角形顶角的平分线平分底边并且垂直于底边

12 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合

13 推论3 等边三角形的各角都相等,并且每一个角都等于60°

14 等腰三角形的判定定理 如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)

15 推论1 三个角都相等的三角形是等边三角形

16 推论 2 有一个角等于60°的等腰三角形是等边三角形

17 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半

18 直角三角形斜边上的中线等于斜边上的一半

19 定理 线段垂直平分线上的点和这条线段两个端点的距离相等

20 逆定理 和一条线段两个端点距离相等的点,在这条线段的垂直平分线上

初二数学求定义域口诀

求定义域有讲究,四项原则须留意。

负数不能开平方,分母为零无意义。

指是分数底正数,数零没有零次。

限制条件不唯一,满足多个不等式。

求定义域要过关,四项原则须注意。

负数不能开平方,分母为零无意义。

分数指数底正数,数零没有零次。

限制条件不唯一,不等式组求解集。

初中提高数学成绩诀窍

很多初中生认为自己只要上数学课听得懂就够了,但是一做到综合题就蒙了,基础题会做,但是会马虎。这类问题都是学生在课堂上都以为自己听得懂就够了。

初中同学要首先对数学做一个认知,听得懂≠会做,会做≠拿的到分。听得懂只占你数学成绩的20%,仅仅听得懂只说明你理解能力还可以,不说明你能拿到很高的数学成绩。

只有听的懂理解了加上练,再加上多练,达到最后又快又准的做出来,这时候的数学成绩才会有长足的进步。

八年级上册数学知识点3

函数及其相关概念

1、变量与常量

在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式

用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点

(1)解析法

两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法

把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法

用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤

(1)列表:列表给出自变量与函数的一些对应值

(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点

(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

数据的收集、整理与描述

一、知识框架

二、知识概念

1、全面调查:考察全体对象的调查方式叫做全面调查、

2、抽样调查:调查部分数据,根据部分来估计总体的调查方式称为抽样调查、

3、总体:要考察的全体对象称为总体、

4、个体:组成总体的每一个考察对象称为个体、

5、样本:被抽取的所有个体组成一个样本、

6、样本容量:样本中个体的数目称为样本容量、

7、频数:一般地,我们称落在不同小组中的数据个数为该组的频数、

8、频率:频数与数据总数的比为频率、

9、组数和组距:在统计数据时,把数据按照一定的范围分成若干各组,分成组的个数称为组数,每一组两个端点的差叫做组距、

四边形

平行四边形定义:有两组对边分别平行的四边形叫做平行四边形。

平行四边形的性质:平行四边形的对边相等;平行四边形的对角相等。平行四边形的对角线互相平分。

平行四边形的判定

1、两组对边分别相等的四边形是平行四边形

2、对角线互相平分的四边形是平行四边形;

3、两组对角分别相等的四边形是平行四边形;

4、一组对边平行且相等的四边形是平行四边形。

三角形的中位线平行于三角形的第三边,且等于第三边的一半。

直角三角形斜边上的中线等于斜边的一半。

矩形的定义:有一个角是直角的平行四边形。

矩形的性质:矩形的四个角都是直角;矩形的对角线平分且相等。AC=BD

矩形判定定理:

1、有一个角是直角的平行四边形叫做矩形。

2、对角线相等的平行四边形是矩形。

3、有三个角是直角的四边形是矩形。

菱形的定义:邻边相等的平行四边形。

菱形的性质:菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角。

菱形的判定定理:

1、一组邻边相等的平行四边形是菱形。

2、对角线互相垂直的平行四边形是菱形。

3、四条边相等的四边形是菱形。S菱形=1/2×ab(a、b为两条对角线)

正方形定义:一个角是直角的菱形或邻边相等的矩形。

正方形的性质:四条边都相等,四个角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:

1、邻边相等的矩形是正方形。

2、有一个角是直角的菱形是正方形。

梯形的定义:一组对边平行,另一组对边不平行的四边形叫做梯形。

直角梯形的定义:有一个角是直角的梯形

等腰梯形的定义:两腰相等的梯形。

等腰梯形的性质:等腰梯形同一底边上的两个角相等;等腰梯形的两条对角线相等。

等腰梯形判定定理:同一底上两个角相等的梯形是等腰梯形。

解梯形问题常用的辅助线:如图

线段的重心就是线段的中点。平行四边形的重心是它的两条对角线的交点。三角形的三条中线交于疑点,这一点就是三角形的重心。宽和长的比是—1(约为0、618)的矩形叫做黄金矩形。

如何提高解答数学题的能力

数学的解答能力,主要通过实际的练习来提高。数学练习应注意以下几点:

(1)、端正态度,充分认识到数学练习的重要性。实际练习不仅可以提高解答速度,掌握解答技能技巧,而且,许多的新问题常在练习中出现。

(2)、要有自信心与意志力。数学练习常有繁杂的计算,深奥的证明,自己应有充足的信心,顽强的意志,耐心细致的习惯。

(3)、要养成先思考,后解答,再检查的良好习惯,遇到一个题,不能盲目地进行练习,无效计算,应先深入领会题意,认真思考,抓住关键,再作解答。解答后,还应进行检查。

多项式定义

在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。

对于比较广义的定义,1个或0个单项式的和也算多项式。按这个定义,多项式就是整式。实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。0作为多项式时,次数定义为负无穷大(或0)。单项式和多项式统称为整式。

35 1881364
");